Dirichlet Variational Autoencoder

被引:42
|
作者
Joo, Weonyoung [1 ]
Lee, Wonsung [2 ]
Park, Sungrae [3 ]
Moon, Il-Chul [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Ind & Syst Engn, Daejeon 34141, South Korea
[2] SK Telecom, AI Technol Unit, Seoul 04539, South Korea
[3] NAVER Corp, Clova AI Res, Gyeonggi Do 13561, South Korea
基金
新加坡国家研究基金会;
关键词
Representation learning; Variational autoencoder; Deep generative model; Multi-modal latent representation; Component collapse;
D O I
10.1016/j.patcog.2020.107514
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes Dirichlet Variational Autoencoder (DirVAE) using a Dirichlet prior. To infer the parameters of DirVAE, we utilize the stochastic gradient method by approximating the inverse cumulative distribution function of the Gamma distribution, which is a component of the Dirichlet distribution. This approximation on a new prior led an investigation on the component collapsing, and DirVAE revealed that the component collapsing originates from two problem sources: decoder weight collapsing and latent value collapsing. The experimental results show that 1) DirVAE generates the result with the best log-likelihood compared to the baselines; 2) DirVAE produces more interpretable latent values with no collapsing issues which the baselines suffer from; 3) the latent representation from DirVAE achieves the best classification accuracy in the (semi-)supervised classification tasks on MNIST, OMNIGLOT, COIL-20, SVHN, and CIFAR-10 compared to the baseline VAEs; and 4) the DirVAE augmented topic models show better performances in most cases. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Hyperspectral Pixel Unmixing With Latent Dirichlet Variational Autoencoder
    Mantripragada, Kiran
    Qureshi, Faisal Z.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12
  • [2] Decoupling Sparsity and Smoothness in the Dirichlet Variational Autoencoder Topic Model
    Burkhardt, Sophie
    Kramer, Stefan
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [3] Dirichlet variational autoencoder for joint slot filling and intent detection
    Gao, Wang
    Wang, Yu-Wei
    Zhang, Fan
    Fang, Yuan
    [J]. Journal of Computers (Taiwan), 2021, 32 (02) : 61 - 73
  • [4] Decoupling sparsity and smoothness in the dirichlet variational autoencoder topic model
    Burkhardt, Sophie
    Kramer, Stefan
    [J]. Journal of Machine Learning Research, 2019, 20
  • [5] A topic modeling and image classification framework: The Generalized Dirichlet variational autoencoder
    Ojo, Akinlolu Oluwabusayo
    Bouguila, Nizar
    [J]. PATTERN RECOGNITION, 2024, 146
  • [6] AN ITERATIVE METHOD FOR HYPERSPECTRAL PIXEL UNMIXING LEVERAGING LATENT DIRICHLET VARIATIONAL AUTOENCODER
    Mantripragada, Kiran
    Adler, Paul R.
    Olsen, Peder A.
    Qureshi, Faisal Z.
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7527 - 7530
  • [7] GeoSDVA: A Semi-Supervised Dirichlet Variational Autoencoder Model for Transportation Mode Identification
    Zhang, Xiaoxi
    Gao, Yuan
    Wang, Xin
    Feng, Jun
    Shi, Yan
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (05)
  • [8] Contextual anomaly detection for high-dimensional data using Dirichlet process variational autoencoder
    Kim, Hyojoong
    Kim, Heeyoung
    [J]. IISE TRANSACTIONS, 2023, 55 (05) : 433 - 444
  • [9] The Autoencoding Variational Autoencoder
    Cemgil, A. Taylan
    Ghaisas, Sumedh
    Dvijotham, Krishnamurthy
    Gowal, Sven
    Kohli, Pushmeet
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [10] Grammar Variational Autoencoder
    Kusner, Matt J.
    Paige, Brooks
    Hernandez-Lobato, Jose Miguel
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70