Unextendible product bases and bound entanglement

被引:594
|
作者
Bennett, CH [1 ]
DiVincenzo, DP
Mor, T
Shor, PW
Smolin, JA
Terhal, BM
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Univ Montreal, DIRO, Montreal, PQ H3C 3J7, Canada
[3] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[4] AT&T Bell Labs, Res, Florham Pk, NJ 07932 USA
[5] Univ Amsterdam, ITF, NL-1018 XE Amsterdam, Netherlands
[6] Ctr Wiskunde & Informat, NL-1098 SJ Amsterdam, Netherlands
关键词
D O I
10.1103/PhysRevLett.82.5385
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An unextendible product basis (UPB) for a multipartite quantum system is an incomplete orthogonal product basis whose complementary subspace contains no product state. We give examples of UPBs, and show that the uniform mixed state over the subspace complementary to any UPB is a bound entangled state. We exhibit a tripartite 2 x 2 x 2 UPB whose complementary mixed state has tripartite entanglement but no bipartite entanglement, i.e., all three corresponding 2 x 4 bipartite mixed states are unentangled. We show that members of a UPB are not perfectly distinguishable by local positive operator valued measurements and classical communication.
引用
收藏
页码:5385 / 5388
页数:4
相关论文
共 50 条
  • [41] Constructions of unextendible entangled bases
    Shi, Fei
    Zhang, Xiande
    Guo, Yu
    QUANTUM INFORMATION PROCESSING, 2019, 18 (10)
  • [42] Tight Bell inequalities with no quantum violation from qubit unextendible product bases
    Augusiak, R.
    Fritz, T.
    Kotowski, Ma
    Kotowski, Mi
    Pawlowski, M.
    Lewenstein, M.
    Acin, A.
    PHYSICAL REVIEW A, 2012, 85 (04):
  • [43] Locally indistinguishable subspaces spanned by three-qubit unextendible product bases
    Duan, Runyao
    Xin, Yu
    Ying, Mingsheng
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [44] Quantification of Unextendible Entanglement and Its Applications in Entanglement Distillation
    Wang, Kun
    Wang, Xin
    Wilde, Mark M.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1939 - 1943
  • [45] The Minimum Size of Unextendible Product Bases in the Bipartite Case (and Some Multipartite Cases)
    Jianxin Chen
    Nathaniel Johnston
    Communications in Mathematical Physics, 2015, 333 : 351 - 365
  • [46] Unextendible maximally entangled bases
    Bravyi, Sergei
    Smolin, John A.
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [47] The Minimum Size of Unextendible Product Bases in the Bipartite Case (and Some Multipartite Cases)
    Chen, Jianxin
    Johnston, Nathaniel
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (01) : 351 - 365
  • [48] Extension of the unextendible product bases of 5-qubit under coarsening the system
    Jinmei Wang
    Yu Guo
    Ruiping Wen
    Quantum Information Processing, 22
  • [49] Constructions of unextendible entangled bases
    Fei Shi
    Xiande Zhang
    Yu Guo
    Quantum Information Processing, 2019, 18
  • [50] Extension of the unextendible product bases of 5-qubit under coarsening the system
    Wang, Jinmei
    Guo, Yu
    Wen, Ruiping
    QUANTUM INFORMATION PROCESSING, 2023, 22 (02)