The Minimum Size of Unextendible Product Bases in the Bipartite Case (and Some Multipartite Cases)

被引:53
|
作者
Chen, Jianxin [1 ,2 ,3 ]
Johnston, Nathaniel [2 ]
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Chinese Acad Sci, Acad Math & Syst Sci, UTS AMSS Joint Res Lab Quantum Computat & Quantum, Beijing, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Minimum Size; Orthogonality Condition; Permutation Matrix; Positive Partial Transpose; Nonzero Product;
D O I
10.1007/s00220-014-2186-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A long-standing open question asks for the minimum number of vectors needed to form an unextendible product basis in a given bipartite or multipartite Hilbert space. A partial solution was found by Alon and Lovasz (J. Comb. Theory Ser. A, 95:169-179, 2001), but since then only a few other cases have been solved. We solve all remaining bipartite cases, as well as a large family of multipartite cases.
引用
收藏
页码:351 / 365
页数:15
相关论文
共 8 条
  • [1] The Minimum Size of Unextendible Product Bases in the Bipartite Case (and Some Multipartite Cases)
    Jianxin Chen
    Nathaniel Johnston
    Communications in Mathematical Physics, 2015, 333 : 351 - 365
  • [2] Multipartite unextendible product bases and quantum security
    Lin Chen
    Yifan Yuan
    Jiahao Yan
    Mengfan Liang
    Quantum Information Processing, 22
  • [3] Multipartite unextendible product bases and quantum security
    Chen, Lin
    Yuan, Yifan
    Yan, Jiahao
    Liang, Mengfan
    QUANTUM INFORMATION PROCESSING, 2023, 22 (06)
  • [4] Unextendible product bases from tile structures in bipartite systems
    You, Siwen
    Wang, Chen
    Shi, Fei
    Hu, Sihuang
    Zhang, Yiwei
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (01)
  • [5] The construction of 7-qubit unextendible product bases of size ten
    Wang, Kai
    Chen, Lin
    QUANTUM INFORMATION PROCESSING, 2020, 19 (06)
  • [6] The construction of 7-qubit unextendible product bases of size ten
    Kai Wang
    Lin Chen
    Quantum Information Processing, 2020, 19
  • [7] Nonexistence of n-qubit unextendible product bases of size 2n-5
    Chen, Lin
    Dokovic, Dragomir Z.
    QUANTUM INFORMATION PROCESSING, 2018, 17 (02)
  • [8] Nonexistence of n-qubit unextendible product bases of size 2n-5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^n-5$$\end{document}
    Lin Chen
    Dragomir Ž. Đoković
    Quantum Information Processing, 2018, 17 (2)