RatUNet: residual U-Net based on attention mechanism for image denoising

被引:12
|
作者
Zhang, Huibin [1 ,2 ]
Lian, Qiusheng [1 ,3 ]
Zhao, Jianmin [1 ,4 ]
Wang, Yining [2 ]
Yang, Yuchi [1 ,3 ]
Feng, Suqin [2 ]
机构
[1] Yanshan Univ, Inst Informat Sci & Technol, Qinhuangdao, Hebei, Peoples R China
[2] Xinzhou Teachers Univ, Comp Dept, Xinzhou, Shanxi, Peoples R China
[3] Yanshan Univ, Hebei Key Lab Informat Transmiss & Signal Proc, Qinhuangdao, Hebei, Peoples R China
[4] Inner Mongolia Univ Sci & Technol, Sch Informat Engn, Baotou, Inner Mongolia, Peoples R China
关键词
Image denoising; Convolutional neural networks; U-Net; Attention mechanism; RatUNet; FRAMEWORK;
D O I
10.7717/peerj-cs.970
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep convolutional neural networks (CNNs) have been very successful in image denoising. However, with the growth of the depth of plain networks, CNNs may result in performance degradation. The lack of network depth leads to the limited ability of the network to extract image features and difficults to fuse the shallow image features into the deep image information. In this work, we propose an improved deep convolutional U-Net framework (RatUNet) for image denoising. RatUNet improves Unet as follows: (1) RatUNet uses the residual blocks of ResNet to deepen the network depth, so as to avoid the network performance saturation. (2) RatUNet improves the down-sampling method, which is conducive to extracting image features. (3) RatUNet improves the up-sampling method, which is used to restore image details. (4) RatUNet improves the skip-connection method of the U-Net network, which is used to fuse the shallow feature information into the deep image details, and it is more conducive to restore the clean image. (5) In order to better process the edge information of the image, RatUNet uses depthwise and polarized self-attention mechanism to guide a CNN for image denoising. Extensive experiments show that our RatUNet is more efficient and has better performance than existing state-of-the-art denoising methods, especially in SSIM metrics, the denoising effect of the RatUNet achieves very high performance. Visualization results show that the denoised image by RatUNet is smoother and sharper than other methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] DRA U-Net: An Attention based U-Net Framework for 2D Medical Image Segmentation
    Zhang, Xian
    Feng, Ziyuan
    Zhong, Tianchi
    Shen, Sicheng
    Zhang, Ruolin
    Zhou, Lijie
    Zhang, Bo
    Wang, Wendong
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3936 - 3942
  • [22] Elevator vibration signal denoising by deep residual U-Net
    Xie, Pengdong
    Zhang, Linxuan
    Li, Minghong
    Lau, Shing Fung Sean
    Huang, Jinhui
    MEASUREMENT, 2024, 225
  • [23] Hyperspectral and multispectral image fusion via residual selective kernel attention-based U-net
    Deng, Jiawei
    Yang, Bin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (05) : 1699 - 1726
  • [24] Medical Image Denoising with Recurrent Residual U-Net (R2U-Net) base Auto-Encoder
    Nasrin, Shamima
    Alom, Md Zahangir
    Burada, Ranga
    Taha, Tarek M.
    Asari, Vijayan K.
    PROCEEDINGS OF THE 2019 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON), 2019, : 345 - 350
  • [25] Scale Input Adapted Attention for Image Denoising Using a Densely Connected U-Net: SADE-Net
    Acar, Vedat
    Eksioglu, Ender M.
    COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 12876 : 792 - 801
  • [26] Multi-Scale Residual U-Net Fundus Blood Vessel Segmentation Based on Attention Mechanism
    Zhao Feng
    Zhong Beibei
    Liu Hanqiang
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (18)
  • [27] WRANet: wavelet integrated residual attention U-Net network for medical image segmentation
    Zhao, Yawu
    Wang, Shudong
    Zhang, Yulin
    Qiao, Sibo
    Zhang, Mufei
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (06) : 6971 - 6983
  • [28] WRANet: wavelet integrated residual attention U-Net network for medical image segmentation
    Yawu Zhao
    Shudong Wang
    Yulin Zhang
    Sibo Qiao
    Mufei Zhang
    Complex & Intelligent Systems, 2023, 9 : 6971 - 6983
  • [29] Residual-Attention UNet plus plus : A Nested Residual-Attention U-Net for Medical Image Segmentation
    Li, Zan
    Zhang, Hong
    Li, Zhengzhen
    Ren, Zuyue
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [30] Image denoising method based on deep learning using improved U-net
    Han J.
    Choi J.
    Lee C.
    IEIE Transactions on Smart Processing and Computing, 2021, 10 (04): : 291 - 295