RatUNet: residual U-Net based on attention mechanism for image denoising

被引:12
|
作者
Zhang, Huibin [1 ,2 ]
Lian, Qiusheng [1 ,3 ]
Zhao, Jianmin [1 ,4 ]
Wang, Yining [2 ]
Yang, Yuchi [1 ,3 ]
Feng, Suqin [2 ]
机构
[1] Yanshan Univ, Inst Informat Sci & Technol, Qinhuangdao, Hebei, Peoples R China
[2] Xinzhou Teachers Univ, Comp Dept, Xinzhou, Shanxi, Peoples R China
[3] Yanshan Univ, Hebei Key Lab Informat Transmiss & Signal Proc, Qinhuangdao, Hebei, Peoples R China
[4] Inner Mongolia Univ Sci & Technol, Sch Informat Engn, Baotou, Inner Mongolia, Peoples R China
关键词
Image denoising; Convolutional neural networks; U-Net; Attention mechanism; RatUNet; FRAMEWORK;
D O I
10.7717/peerj-cs.970
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep convolutional neural networks (CNNs) have been very successful in image denoising. However, with the growth of the depth of plain networks, CNNs may result in performance degradation. The lack of network depth leads to the limited ability of the network to extract image features and difficults to fuse the shallow image features into the deep image information. In this work, we propose an improved deep convolutional U-Net framework (RatUNet) for image denoising. RatUNet improves Unet as follows: (1) RatUNet uses the residual blocks of ResNet to deepen the network depth, so as to avoid the network performance saturation. (2) RatUNet improves the down-sampling method, which is conducive to extracting image features. (3) RatUNet improves the up-sampling method, which is used to restore image details. (4) RatUNet improves the skip-connection method of the U-Net network, which is used to fuse the shallow feature information into the deep image details, and it is more conducive to restore the clean image. (5) In order to better process the edge information of the image, RatUNet uses depthwise and polarized self-attention mechanism to guide a CNN for image denoising. Extensive experiments show that our RatUNet is more efficient and has better performance than existing state-of-the-art denoising methods, especially in SSIM metrics, the denoising effect of the RatUNet achieves very high performance. Visualization results show that the denoised image by RatUNet is smoother and sharper than other methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] An improved segmentation algorithm of CT image based on U-Net network and attention mechanism
    Jin Yang
    Kai Qiu
    Multimedia Tools and Applications, 2022, 81 : 35983 - 36006
  • [12] Image denoising by attention U-Net based network module for automated enhancement of low light images
    Vaidya, Chandu Dajiba
    Jayavel, Amudhavel
    Mishra, Pradeep Kumar
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (06)
  • [13] AttResDU-Net: Medical Image Segmentation Using Attention-based Residual Double U-Net
    Khan, Akib Mohammed
    Ashrafee, Alif
    Khan, Fahim Shahriar
    Hasan, Md. Bakhtiar
    Kabir, Md. Hasanul
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [14] IECAU-Net: A Wood Defects Image Segmentation Network Based on Improved Attention U-Net and Attention Mechanism
    Dong, Yingda
    He, Chunguang
    Xiang, Xiaoyang
    Cui, Yuhan
    Kang, Yongkang
    Ding, Aiming
    Duo, Huaqiong
    Wang, Ximing
    BIORESOURCES, 2025, 20 (02): : 3545 - 3556
  • [15] Image Denoising Based On Deep Feature Fusion And U-Net Network
    Zhang, Yong
    Journal of Applied Science and Engineering, 2025, 28 (10): : 2077 - 2085
  • [16] URNet: A U-Net based residual network for image dehazing
    Feng, Ting
    Wang, Chuansheng
    Chen, Xinwei
    Fan, Haoyi
    Zeng, Kun
    Li, Zuoyong
    APPLIED SOFT COMPUTING, 2021, 102
  • [17] ATTENTION-BASED U-NET FOR IMAGE DEMOIRÉING
    Lehmann T.M.
    Machine Graphics and Vision, 2022, 31 (1-4): : 3 - 17
  • [18] Study on Echocardiographic Image Segmentation Based on Attention U-Net
    Wang, Kai
    Zhang, Jiwei
    Hachiya, Hirotaka
    Wu, Haiyuan
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 1091 - 1096
  • [19] U-Net CSF Cells Segmentation Based on Attention Mechanism
    Dai, Yin
    Liu, Wei-Bin
    Dong, Xin-Yang
    Song, Yu-Meng
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2022, 43 (07): : 944 - 950
  • [20] ARU-DGAN: A dual generative adversarial network based on attention residual U-Net for magneto-acousto-electrical image denoising
    Bu, Shuaiyu
    Li, Yuanyuan
    Ren, Wenting
    Liu, Guoqiang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19661 - 19685