A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition

被引:64
|
作者
Ghazi, Mostafa Mehdipour [1 ]
Ekenel, Hazim Kemal [2 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkey
[2] Istanbul Tech Univ, Dept Comp Engn, Istanbul, Turkey
关键词
D O I
10.1109/CVPRW.2016.20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning based approaches have been dominating the face recognition field due to the significant performance improvement they have provided on the challenging wild datasets. These approaches have been extensively tested on such unconstrained datasets, on the Labeled Faces in the Wild and YouTube Faces, to name a few. However, their capability to handle individual appearance variations caused by factors such as head pose, illumination, occlusion, and misalignment has not been thoroughly assessed till now. In this paper, we present a comprehensive study to evaluate the performance of deep learning based face representation under several conditions including the varying head pose angles, upper and lower face occlusion, changing illumination of different strengths, and misalignment due to erroneous facial feature localization. Two successful and publicly available deep learning models, namely VGG-Face and Lightened CNN have been utilized to extract face representations. The obtained results show that although deep learning provides a powerful representation for face recognition, it can still benefit from preprocessing, for example, for pose and illumination normalization in order to achieve better performance under various conditions. Particularly, if these variations are not included in the dataset used to train the deep learning model, the role of preprocessing becomes more crucial. Experimental results also show that deep learning based representation is robust to misalignment and can tolerate facial feature localization errors up to 10% of the interocular distance.
引用
收藏
页码:102 / 109
页数:8
相关论文
共 50 条
  • [31] Learning the face space - Representation and recognition
    Liu, CJ
    Wechsler, H
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS: COMPUTER VISION AND IMAGE ANALYSIS, 2000, : 249 - 256
  • [32] Learning-based Image Representation and Method for Face Recognition
    Liu, Zhiming
    Liu, Chengjun
    Tao, Qingchuan
    2009 IEEE 3RD INTERNATIONAL CONFERENCE ON BIOMETRICS: THEORY, APPLICATIONS AND SYSTEMS, 2009, : 283 - +
  • [33] Joint face normalization and representation learning for face recognition
    Liu, Yanfei
    Chen, Junhua
    Li, Yuanqian
    Wu, Tianshu
    Wen, Hao
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (02)
  • [34] Deep representation learning for face hallucination
    Lu, Tao
    Wang, Yu
    Xu, Ruobo
    Liu, Wei
    Fang, Wenhua
    Zhang, Yanduo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (05) : 6305 - 6330
  • [35] Deep representation learning for face hallucination
    Tao Lu
    Yu Wang
    Ruobo Xu
    Wei Liu
    Wenhua Fang
    Yanduo Zhang
    Multimedia Tools and Applications, 2022, 81 : 6305 - 6330
  • [36] LIGHT FIELD BASED FACE RECOGNITION VIA A FUSED DEEP REPRESENTATION
    Sepas-Moghaddam, Alireza
    Correia, Paulo Lobato
    Nasrollahi, Kamal
    Moeslund, Thomas B.
    Pereira, Fernando
    2018 IEEE 28TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2018,
  • [37] Robust Face Recognition via Multimodal Deep Face Representation
    Ding, Changxing
    Tao, Dacheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (11) : 2049 - 2058
  • [38] Deep Learning and Face Recognition: Face Recognition Approach Based on the DS-CDCN Algorithm
    Deng, Nan
    Xu, Zhengguang
    Li, Xiuyun
    Gao, Chenxuan
    Wang, Xue
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [39] Recent Advances in Infrared Face Analysis and Recognition with Deep Learning
    Mahouachi, Dorra
    Akhloufi, Moulay A. A.
    AI, 2023, 4 (01) : 199 - 233
  • [40] FaceTime - Deep Learning Based Face Recognition Attendance System
    Arsenovic, Marko
    Sladojevic, Srdjan
    Anderla, Andras
    Stefanovic, Darko
    2017 IEEE 15TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS (SISY), 2017, : 53 - 57