A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition

被引:64
|
作者
Ghazi, Mostafa Mehdipour [1 ]
Ekenel, Hazim Kemal [2 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkey
[2] Istanbul Tech Univ, Dept Comp Engn, Istanbul, Turkey
关键词
D O I
10.1109/CVPRW.2016.20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning based approaches have been dominating the face recognition field due to the significant performance improvement they have provided on the challenging wild datasets. These approaches have been extensively tested on such unconstrained datasets, on the Labeled Faces in the Wild and YouTube Faces, to name a few. However, their capability to handle individual appearance variations caused by factors such as head pose, illumination, occlusion, and misalignment has not been thoroughly assessed till now. In this paper, we present a comprehensive study to evaluate the performance of deep learning based face representation under several conditions including the varying head pose angles, upper and lower face occlusion, changing illumination of different strengths, and misalignment due to erroneous facial feature localization. Two successful and publicly available deep learning models, namely VGG-Face and Lightened CNN have been utilized to extract face representations. The obtained results show that although deep learning provides a powerful representation for face recognition, it can still benefit from preprocessing, for example, for pose and illumination normalization in order to achieve better performance under various conditions. Particularly, if these variations are not included in the dataset used to train the deep learning model, the role of preprocessing becomes more crucial. Experimental results also show that deep learning based representation is robust to misalignment and can tolerate facial feature localization errors up to 10% of the interocular distance.
引用
下载
收藏
页码:102 / 109
页数:8
相关论文
共 50 条
  • [1] Deep Learning Based Representation for Face Recognition
    Prasad, Puja S.
    Pathak, Rashmi
    Gunjan, Vinit Kumar
    Rao, H. V. Ramana
    ICCCE 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND CYBER-PHYSICAL ENGINEERING, 2020, 570 : 419 - 424
  • [2] Deep Learning Based Face Recognition with Sparse Representation Classification
    Cheng, Eric-Juwei
    Prasad, Mukesh
    Puthal, Deepak
    Sharma, Nabin
    Prasad, Om Kumar
    Chin, Po-Hao
    Lin, Chin-Teng
    Blumenstein, Michael
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT III, 2017, 10636 : 665 - 674
  • [3] A Novel Sparse Representation Classification Face Recognition Based on Deep Learning
    Zeng, Junying
    Zhai, Yikui
    Gan, Junying
    IEEE 12TH INT CONF UBIQUITOUS INTELLIGENCE & COMP/IEEE 12TH INT CONF ADV & TRUSTED COMP/IEEE 15TH INT CONF SCALABLE COMP & COMMUN/IEEE INT CONF CLOUD & BIG DATA COMP/IEEE INT CONF INTERNET PEOPLE AND ASSOCIATED SYMPOSIA/WORKSHOPS, 2015, : 1520 - 1523
  • [4] UniformFace: Learning Deep Equidistributed Representation for Face Recognition
    Duan, Yueqi
    Lu, Jiwen
    Zhou, Jie
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3410 - 3419
  • [5] Deep Representation Learning With Feature Augmentation for Face Recognition
    Sun, Jie
    Lu, Shengli
    Pang, Wei
    Sun, Zhilin
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 171 - 175
  • [6] Towards Universal Representation Learning for Deep Face Recognition
    Shi, Yichun
    Yu, Xiang
    Sohn, Kihyuk
    Chandraker, Manmohan
    Jain, Anil K.
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6816 - 6825
  • [7] A Comprehensive Study of Face Recognition Using Deep Learning
    Ito, Koichi
    Kawai, Hiroya
    Aoki, Takafumi
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 1762 - 1768
  • [8] Face Recognition Based on Deep Learning
    Wang, Weihong
    Yang, Jie
    Xiao, Jianwei
    Li, Sheng
    Zhou, Dixin
    HUMAN CENTERED COMPUTING, HCC 2014, 2015, 8944 : 812 - 820
  • [9] Algorithm Analysis of Face Recognition Robot Based on Deep Learning
    Mu, Zehui
    Feng, Leijie
    Shang, Yanzi
    Liu, Qingyang
    Hu, Libing
    Zhou, Fei
    Fu, Xianjun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (05)
  • [10] Face recognition: Sparse Representation vs. Deep Learning
    Alskeini, Neamah H.
    Kien Nguyen Thanh
    Chandran, Vinod
    Boles, Wageeh
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON GRAPHICS AND SIGNAL PROCESSING (ICGSP 2018), 2018, : 31 - 37