The Confidence Interval of Entropy Estimation through a Noisy Channel

被引:0
|
作者
Ho, Siu-Wai [1 ]
Chan, Terence [1 ]
Grant, Alex [1 ]
机构
[1] Univ S Australia, Inst Telecommun Res, Adelaide, SA 5001, Australia
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Suppose a stationary memoryless source is observed through a discrete memoryless channel. Determining analytical confidence intervals on the source entropy is known to be a difficult problem, even when the observation channel is noiseless. In this paper, we determine confidence intervals for estimation of source entropy over discrete memoryless channels with invertible transition matrices. A lower bound is given for the minimum number of samples required to guarantee a desired confidence interval. All these results do not require any prior knowledge of the source distribution, other than the alphabet size. When the alphabet size is countably infinite or unknown, we illustrate an inherent difficulty in estimating the source entropy.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Maximum entropy models for speech confidence estimation
    Estienne, Claudio
    Sanchis, Alberto
    Juan, Alfons
    Vidal, Enrique
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 4421 - +
  • [42] The decomposition of Shannon's entropy and a confidence interval for beta diversity
    Marcon, Eric
    Herault, Bruno
    Baraloto, Christopher
    Lang, Gabriel
    OIKOS, 2012, 121 (04) : 516 - 522
  • [43] Bootstrap estimation method of confidence interval for long-life product reliability based on maximum information entropy
    He Y.
    Wang Y.
    He L.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (06): : 1880 - 1892
  • [44] Confidence Interval Estimation for Inequality Indices of the Gini Family
    Paola Palmitesta
    Corrado Provasi
    Cosimo Spera
    Computational Economics, 2000, 16 (1-2) : 137 - 147
  • [45] Fractal dimension confidence interval estimation of epicentral distributions
    De Luca, L
    Lasocki, S
    Luzio, D
    Vitale, M
    ANNALI DI GEOFISICA, 1999, 42 (05): : 911 - 925
  • [46] CONFIDENCE-INTERVAL ESTIMATION SUBJECT TO ORDER RESTRICTIONS
    HWANG, JTG
    DASPEDDADA, S
    ANNALS OF STATISTICS, 1994, 22 (01): : 67 - 93
  • [47] Confidence interval estimation for negative binomial group distribution
    Yu, Wei
    Xu, Wangli
    Zhu, Lixing
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (03) : 524 - 534
  • [48] Confidence Interval Estimation of Predictive Performance in the Context of AutoML
    Paraschakis, Konstantinos
    Castellani, Andrea
    Borboudakis, Giorgos
    Tsamardinos, Ioannis
    INTERNATIONAL CONFERENCE ON AUTOMATED MACHINE LEARNING, 2024, 256
  • [49] Mortality rate and confidence interval estimation in humanitarian emergencies
    Sullivan, Kevin
    Hossain, S. M. Moazzem
    Woodruff, Bradley A.
    DISASTERS, 2010, 34 (01) : 164 - 175
  • [50] Confidence interval estimation of overlap: equal means case
    Mulekar, MS
    Mishra, SN
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2000, 34 (02) : 121 - 137