The Confidence Interval of Entropy Estimation through a Noisy Channel

被引:0
|
作者
Ho, Siu-Wai [1 ]
Chan, Terence [1 ]
Grant, Alex [1 ]
机构
[1] Univ S Australia, Inst Telecommun Res, Adelaide, SA 5001, Australia
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Suppose a stationary memoryless source is observed through a discrete memoryless channel. Determining analytical confidence intervals on the source entropy is known to be a difficult problem, even when the observation channel is noiseless. In this paper, we determine confidence intervals for estimation of source entropy over discrete memoryless channels with invertible transition matrices. A lower bound is given for the minimum number of samples required to guarantee a desired confidence interval. All these results do not require any prior knowledge of the source distribution, other than the alphabet size. When the alphabet size is countably infinite or unknown, we illustrate an inherent difficulty in estimating the source entropy.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Confidence interval estimation under inverse sampling
    Zou, G. Y.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (01) : 55 - 64
  • [22] Confidence interval estimation by a joint pivot method
    Xu, Wangli
    Yu, Wei
    Li, Zaixing
    COMPUTATIONAL STATISTICS, 2016, 31 (02) : 497 - 511
  • [23] Confidence interval estimation of a common correlation coefficient
    Tian, Lili
    Wilding, Gregory E.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (10) : 4872 - 4877
  • [24] Confidence interval estimation for path flow estimator
    Chootinan, Piya
    Chen, Anthony
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2011, 45 (10) : 1680 - 1698
  • [25] Confidence interval estimation for DEM mean error
    Chen, Chuan-Fa
    Wang, Dong
    Guo, Heng-Qing
    Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology, 2011, 40 (04): : 647 - 652
  • [26] Adaptive confidence interval for pointwise curve estimation
    Picard, D
    Tribouley, K
    ANNALS OF STATISTICS, 2000, 28 (01): : 298 - 335
  • [27] Fast Motion Estimation Based on Confidence Interval
    Hu, Nan
    Yang, En-Hui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (08) : 1310 - 1322
  • [28] Approach to confidence interval estimation for curve numbers
    McCuen, RH
    JOURNAL OF HYDROLOGIC ENGINEERING, 2002, 7 (01) : 43 - 48
  • [29] Confidence interval estimation of a normal percentile - Response
    Chakraborti, S.
    Li, J.
    AMERICAN STATISTICIAN, 2008, 62 (02): : 187 - 187
  • [30] Towards Confidence Interval Estimation in Truth Discovery
    Xiao, Houping
    Gao, Jing
    Li, Qi
    Ma, Fenglong
    Su, Lu
    Feng, Yunlong
    Zhang, Aidong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (03) : 575 - 588