The Confidence Interval of Entropy Estimation through a Noisy Channel

被引:0
|
作者
Ho, Siu-Wai [1 ]
Chan, Terence [1 ]
Grant, Alex [1 ]
机构
[1] Univ S Australia, Inst Telecommun Res, Adelaide, SA 5001, Australia
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Suppose a stationary memoryless source is observed through a discrete memoryless channel. Determining analytical confidence intervals on the source entropy is known to be a difficult problem, even when the observation channel is noiseless. In this paper, we determine confidence intervals for estimation of source entropy over discrete memoryless channels with invertible transition matrices. A lower bound is given for the minimum number of samples required to guarantee a desired confidence interval. All these results do not require any prior knowledge of the source distribution, other than the alphabet size. When the alphabet size is countably infinite or unknown, we illustrate an inherent difficulty in estimating the source entropy.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Confidence Interval Estimation for Precipitation Quantiles Based on Principle of Maximum Entropy
    Wei, Ting
    Song, Songbai
    ENTROPY, 2019, 21 (03)
  • [2] SIMULTANEOUS CONFIDENCE INTERVAL ESTIMATION
    BOSE, RC
    ROY, SN
    ANNALS OF MATHEMATICAL STATISTICS, 1953, 24 (01): : 144 - 144
  • [3] SIMULTANEOUS CONFIDENCE INTERVAL ESTIMATION
    ROY, SN
    BOSE, RC
    ANNALS OF MATHEMATICAL STATISTICS, 1953, 24 (04): : 513 - 536
  • [4] Local estimation of failure probability function and its confidence interval with maximum entropy principle
    Ching, Jianye
    Hsieh, Yi-Hung
    PROBABILISTIC ENGINEERING MECHANICS, 2007, 22 (01) : 39 - 49
  • [5] Noisy-Labeled NER with Confidence Estimation
    Liu, Kun
    Fu, Yao
    Tan, Chuanqi
    Chen, Mosha
    Zhang, Ningyu
    Huang, Songfang
    Gao, Sheng
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 3437 - 3445
  • [6] Channel estimation with noisy entanglement
    Bschorr, TC
    Fischer, DG
    Freyberger, M
    PHYSICS LETTERS A, 2001, 292 (1-2) : 15 - 22
  • [7] A confidence interval estimation for the number of signals
    Chen, PY
    Wicks, MC
    RADAR 2002, 2002, (490): : 344 - 348
  • [8] On confidence interval estimation of normal percentiles
    Zili Zhang
    Saralees Nadarajah
    Japanese Journal of Statistics and Data Science, 2018, 1 (2) : 373 - 391
  • [9] CONFIDENCE-INTERVAL ESTIMATION OF INTERACTION
    HOSMER, DW
    LEMESHOW, S
    EPIDEMIOLOGY, 1992, 3 (05) : 452 - 456
  • [10] Confidence interval estimation of a normal percentile
    Chakraborti, S.
    Li, J.
    AMERICAN STATISTICIAN, 2007, 61 (04): : 331 - 336