Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy

被引:49
|
作者
Moody, G. [1 ,2 ,3 ]
Singh, R. [1 ,2 ,3 ]
Li, H. [1 ,2 ]
Akimov, I. A. [4 ,5 ]
Bayer, M. [4 ]
Reuter, D. [6 ]
Wieck, A. D. [6 ]
Bracker, A. S. [7 ]
Gammon, D. [7 ]
Cundiff, S. T. [1 ,2 ,3 ]
机构
[1] Univ Colorado, JILA, Boulder, CO 80309 USA
[2] Natl Inst Stand & Technol, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] Tech Univ Dortmund, D-44221 Dortmund, Germany
[5] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[6] Ruhr Univ Bochum, Lehrstuhl Angew Festkorperphys, D-44780 Bochum, Germany
[7] USN, Res Lab, Washington, DC 20375 USA
来源
PHYSICAL REVIEW B | 2013年 / 87卷 / 04期
关键词
FOURIER-TRANSFORM SPECTROSCOPY;
D O I
10.1103/PhysRevB.87.041304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The emission energy dependence of the biexciton binding energy is investigated in three semiconductor quantum dot (QD) systems that exhibit different quantum well -> QD confinement. Using two-dimensional Fourier-transform spectroscopy, we demonstrate that in strongly confining InAs QDs, the binding energy is independent of exciton emission energy and fluctuations in the ground state -> exciton transition energy are strongly correlated with those of the exciton -> biexciton. In contrast, the biexciton binding energy increases with emission energy in weakly confining interfacial GaAs QDs, and the level of correlation of exciton-biexciton broadening is reduced. A comparison with simulations reveals the significance of the strength and nature of confinement on Coulomb interactions responsible for biexciton renormalization. DOI: 10.1103/PhysRevB.87.041304
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Optical and electronic properties of a two-dimensional quantum dot with an impurity
    Chen, Tairong
    Xie, Wenfang
    Liang, Shijun
    JOURNAL OF LUMINESCENCE, 2013, 139 : 64 - 68
  • [42] Decay of a quantum dot in two-dimensional metallic photonic crystals
    Hatef, A.
    Singh, M.
    OPTICS COMMUNICATIONS, 2011, 284 (09) : 2363 - 2369
  • [43] Ionization of a two-dimensional quantum dot by the field of an electromagnetic wave
    P. A. Eminov
    S. V. Gordeeva
    Moscow University Physics Bulletin, 2013, 68 : 267 - 271
  • [44] Ionization of a two-dimensional quantum dot by the field of an electromagnetic wave
    Eminov, P. A.
    Gordeeva, S. V.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2013, 68 (04) : 267 - 271
  • [45] Nonlinear optical properties of a two-dimensional elliptic quantum dot
    Rezaei, G.
    Mousazadeh, Z.
    Vaseghi, B.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (05): : 1477 - 1481
  • [46] Ballistic to diffusive transition in a two-dimensional quantum dot lattice
    Cleri, Fabrizio
    PHYSICAL REVIEW B, 2015, 92 (21)
  • [47] Two-Dimensional Quantum Dot-Based Electrochemical Biosensors
    Zhang, Jian
    Zhang, Xiaoyue
    Bi, Sai
    BIOSENSORS-BASEL, 2022, 12 (04):
  • [48] Bandstructure Engineering with a Two-Dimensional Patterned Quantum Dot Lattice
    Verma, V. B.
    Dias, N. L.
    Reddy, U.
    Bassett, K. P.
    Li, X.
    Coleman, J. J.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [49] Interaction of a quantum dot with an incompressible two-dimensional electron gas
    Apalkov, VM
    Chakraborty, T
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (03): : 289 - 293
  • [50] Landau quantization and curvature effects in a two-dimensional quantum dot
    Furtado, C.
    Rosas, A.
    Azevedo, S.
    EPL, 2007, 79 (05)