Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy

被引:49
|
作者
Moody, G. [1 ,2 ,3 ]
Singh, R. [1 ,2 ,3 ]
Li, H. [1 ,2 ]
Akimov, I. A. [4 ,5 ]
Bayer, M. [4 ]
Reuter, D. [6 ]
Wieck, A. D. [6 ]
Bracker, A. S. [7 ]
Gammon, D. [7 ]
Cundiff, S. T. [1 ,2 ,3 ]
机构
[1] Univ Colorado, JILA, Boulder, CO 80309 USA
[2] Natl Inst Stand & Technol, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] Tech Univ Dortmund, D-44221 Dortmund, Germany
[5] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[6] Ruhr Univ Bochum, Lehrstuhl Angew Festkorperphys, D-44780 Bochum, Germany
[7] USN, Res Lab, Washington, DC 20375 USA
来源
PHYSICAL REVIEW B | 2013年 / 87卷 / 04期
关键词
FOURIER-TRANSFORM SPECTROSCOPY;
D O I
10.1103/PhysRevB.87.041304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The emission energy dependence of the biexciton binding energy is investigated in three semiconductor quantum dot (QD) systems that exhibit different quantum well -> QD confinement. Using two-dimensional Fourier-transform spectroscopy, we demonstrate that in strongly confining InAs QDs, the binding energy is independent of exciton emission energy and fluctuations in the ground state -> exciton transition energy are strongly correlated with those of the exciton -> biexciton. In contrast, the biexciton binding energy increases with emission energy in weakly confining interfacial GaAs QDs, and the level of correlation of exciton-biexciton broadening is reduced. A comparison with simulations reveals the significance of the strength and nature of confinement on Coulomb interactions responsible for biexciton renormalization. DOI: 10.1103/PhysRevB.87.041304
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Rapid Optical Spin Initialization of a Quantum Dot in the Voigt Geometry Coupled to a Two-Dimensional Semiconductor
    Stefanatos, Dionisis
    Karanikolas, Vasilios
    Iliopoulos, Nikos
    Paspalakis, Emmanuel
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [22] Exchange effects on electron scattering through a quantum dot embedded in a two-dimensional semiconductor structure
    Castelano, L. K.
    Hai, G. -Q.
    Lee, M. -T.
    PHYSICAL REVIEW B, 2007, 76 (16)
  • [23] Nonlinear absorption coefficient and refractive index changes of two-dimensional two-electron quantum dot in rigid confinement
    Woldemariam, Menberu Mengesha
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (09):
  • [24] Quantum Dot Acceptors in Two-Dimensional Epitaxially Fused PbSe Quantum Dot Superlattices
    Notot, Vincent
    Walravens, Willem
    Berthe, Maxime
    Peric, Nemanja
    Addad, Ahmed
    Wallart, Xavier
    Delerue, Christophe
    Hens, Zeger
    Grandidier, Bruno
    Biadala, Louis
    ACS NANO, 2022, 16 (02) : 3081 - 3091
  • [25] Numerical Solutions for a Two-dimensional Quantum Dot Model
    F. Caruso
    V. Oguri
    F. Silveira
    Brazilian Journal of Physics, 2019, 49 : 432 - 437
  • [26] Covalently Linked, Two-Dimensional Quantum Dot Assemblies
    Ritchhart, Andrew
    Monahan, Madison
    Mars, Julian
    Toney, Michael F.
    De Yoreo, James J.
    Cossairt, Brandi M.
    LANGMUIR, 2020, 36 (33) : 9944 - 9951
  • [27] Light absorption by a two-dimensional quantum dot superlattice
    Barseghyan, MG
    Kirakosyan, AA
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 27 (04): : 474 - 480
  • [28] Numerical Solutions for a Two-dimensional Quantum Dot Model
    Caruso, F.
    Oguri, V.
    Silveira, F.
    BRAZILIAN JOURNAL OF PHYSICS, 2019, 49 (03) : 432 - 437
  • [29] Two-dimensional quantum dot in an external magnetic field
    Lipovka, A
    Marin, JL
    Riera, R
    Rosas, R
    PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 2002, 9-10 : 97 - 104
  • [30] Polaron spin relaxation in a two-dimensional quantum dot
    Wang Qi-Wen
    Hong Lan
    ACTA PHYSICA SINICA, 2012, 61 (01)