The Prediction of the Permeability Ratio Using Neural Networks

被引:3
|
作者
Zabihi, R. [1 ,4 ]
Schaffie, M. [2 ,4 ]
Ranjbar, M. [3 ,4 ]
机构
[1] Shahid Bahonar Univ Kerman, Dept Oil & Gas Engn, Kerman, Iran
[2] Shahid Bahonar Univ Kerman, Dept Chem Engn, Kerman, Iran
[3] Shahid Bahonar Univ Kerman, Dept Min Engn, Kerman, Iran
[4] Shahid Bahonar Univ Kerman, Energy & Environm Engn Res Ctr EERC, Kerman, Iran
关键词
calcium and strontium sulfate scales; coreflooding test; multilayer perceptron; permeability ratio; radial basis network;
D O I
10.1080/15567036.2011.563266
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this research, two novel models were presented for prediction of permeability ratio and its reduction due to the formation of calcium and strontium sulfate scales during waterflooding using multilayer perceptron, radial basis function network, and coreflooding test data. To achieve the maximum efficiency, number of neurons, training function, and activation function were optimized for a multilayer perceptron model and spread parameter was optimized for a radial basis function model. The radial basis function model only could predict trend of permeability ratio reduction in the performance stage, but the multilayer perceptron model predicted permeability ratio after waterflooding with a total average absolute deviation of 0.56%.
引用
下载
收藏
页码:650 / 660
页数:11
相关论文
共 50 条
  • [41] Yield Prediction Using Artificial Neural Networks
    Baral, Seshadri
    Tripathy, Asis Kumar
    Bijayasingh, Pritiranjan
    COMPUTER NETWORKS AND INFORMATION TECHNOLOGIES, 2011, 142 : 315 - +
  • [42] Fabric handle prediction using neural networks
    Youssefi, M
    Faez, K
    PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 731 - 732
  • [43] Quality of service prediction using neural networks
    Sarajedini, A
    Chau, PM
    MILCOM 96, CONFERENCE PROCEEDINGS, VOLS 1-3, 1996, : 567 - 570
  • [44] Prediction of Bath Temperature using Neural Networks
    Meradi, H.
    Bouhouche, S.
    Lahreche, M.
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 17, 2006, 17 : 319 - 323
  • [45] Reliability modelling & prediction using neural networks
    Jones, JA
    Chong, L
    Huang, J
    Marshall, J
    EIGHTH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2003, : 40 - 44
  • [46] A Blocking Prediction for Volleyball Using Neural Networks
    Chen, Chien-Hsun
    Chen, Chin-Fa
    Hsu, Ming-Hua
    Lin, Iuon-Chang
    MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1224 - +
  • [47] Prediction of psychrometric parameters using neural networks
    Sreekanth, S
    Ramaswamy, HS
    Sablani, S
    DRYING TECHNOLOGY, 1998, 16 (3-5) : 825 - 837
  • [48] Video Traffic Prediction Using Neural Networks
    Oravec, Milos
    Petras, Miroslav
    Pilka, Filip
    ACTA POLYTECHNICA HUNGARICA, 2008, 5 (04) : 59 - 78
  • [49] Prediction of Surface Distress Using Neural Networks
    Hamdi
    Hadiwardoyo, Sigit P.
    Gomes Correia, A.
    Pereira, Paulo
    Cortez, Paulo
    GREEN PROCESS, MATERIAL, AND ENERGY: A SUSTAINABLE SOLUTION FOR CLIMATE CHANGE, 2017, 1855
  • [50] Nucleophilicity Prediction Using Graph Neural Networks
    Nie, Wan
    Liu, Deguang
    Li, Shuaicheng
    Yu, Haizhu
    Fu, Yao
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (18) : 4319 - 4328