The Prediction of the Permeability Ratio Using Neural Networks

被引:3
|
作者
Zabihi, R. [1 ,4 ]
Schaffie, M. [2 ,4 ]
Ranjbar, M. [3 ,4 ]
机构
[1] Shahid Bahonar Univ Kerman, Dept Oil & Gas Engn, Kerman, Iran
[2] Shahid Bahonar Univ Kerman, Dept Chem Engn, Kerman, Iran
[3] Shahid Bahonar Univ Kerman, Dept Min Engn, Kerman, Iran
[4] Shahid Bahonar Univ Kerman, Energy & Environm Engn Res Ctr EERC, Kerman, Iran
关键词
calcium and strontium sulfate scales; coreflooding test; multilayer perceptron; permeability ratio; radial basis network;
D O I
10.1080/15567036.2011.563266
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this research, two novel models were presented for prediction of permeability ratio and its reduction due to the formation of calcium and strontium sulfate scales during waterflooding using multilayer perceptron, radial basis function network, and coreflooding test data. To achieve the maximum efficiency, number of neurons, training function, and activation function were optimized for a multilayer perceptron model and spread parameter was optimized for a radial basis function model. The radial basis function model only could predict trend of permeability ratio reduction in the performance stage, but the multilayer perceptron model predicted permeability ratio after waterflooding with a total average absolute deviation of 0.56%.
引用
下载
收藏
页码:650 / 660
页数:11
相关论文
共 50 条
  • [31] Dynamic branch prediction using neural networks
    Steven, G
    Anguera, R
    Egan, C
    Steven, F
    Vintan, L
    EUROMICRO SYMPOSIUM ON DIGITAL SYSTEMS DESIGN, PROCEEDINGS, 2001, : 178 - 185
  • [32] Ventilation Liberation Prediction Using Neural Networks
    Yuan, J.
    Chiofolo, C. M.
    Winchell, R. J.
    Chong, D. H.
    Chbat, N. W.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 201
  • [33] RTL Delay Prediction Using Neural Networks
    Lopera, Daniela Sanchez
    Servadei, Lorenzo
    Kasi, Vishwa Priyanka
    Prebeck, Sebastian
    Ecker, Wolfgang
    2021 IEEE NORDIC CIRCUITS AND SYSTEMS CONFERENCE (NORCAS), 2021,
  • [34] Prediction of pile capacity using neural networks
    Teh, CI
    Wong, KS
    Goh, ATC
    Jaritngam, S
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 1997, 11 (02) : 129 - 138
  • [35] Footfall Prediction Using Graph Neural Networks
    Boz, Hasan Alp
    Bahrami, Mohsen
    Balcisoy, Selim
    Pentland, Alex
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [36] Housing Price Prediction Using Neural Networks
    Lim, Wan Teng
    Wang, Lipo
    Wang, Yaoli
    Chang, Qing
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 518 - 522
  • [37] Software Defect Prediction Using Neural Networks
    Jindal, Rajni
    Malhotra, Ruchika
    Jain, Abha
    2014 3RD INTERNATIONAL CONFERENCE ON RELIABILITY, INFOCOM TECHNOLOGIES AND OPTIMIZATION (ICRITO) (TRENDS AND FUTURE DIRECTIONS), 2014,
  • [38] Prediction of climatic changes using neural networks
    Nordemann, D.J.R.
    Weigang, L.
    Informacion Tecnologica, 1998, 9 (03): : 71 - 80
  • [39] Channel Quality Prediction Using Neural Networks
    Botoca, Corina
    Patrascu, Alexandru
    2012 10TH INTERNATIONAL SYMPOSIUM ON ELECTRONICS AND TELECOMMUNICATIONS, 2012, : 199 - 202
  • [40] Twitter Geolocation Prediction Using Neural Networks
    Thomas, Philippe
    Hennig, Leonhard
    LANGUAGE TECHNOLOGIES FOR THE CHALLENGES OF THE DIGITAL AGE, GSCL 2017, 2018, 10713 : 248 - 255