The Prediction of the Permeability Ratio Using Neural Networks

被引:3
|
作者
Zabihi, R. [1 ,4 ]
Schaffie, M. [2 ,4 ]
Ranjbar, M. [3 ,4 ]
机构
[1] Shahid Bahonar Univ Kerman, Dept Oil & Gas Engn, Kerman, Iran
[2] Shahid Bahonar Univ Kerman, Dept Chem Engn, Kerman, Iran
[3] Shahid Bahonar Univ Kerman, Dept Min Engn, Kerman, Iran
[4] Shahid Bahonar Univ Kerman, Energy & Environm Engn Res Ctr EERC, Kerman, Iran
关键词
calcium and strontium sulfate scales; coreflooding test; multilayer perceptron; permeability ratio; radial basis network;
D O I
10.1080/15567036.2011.563266
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this research, two novel models were presented for prediction of permeability ratio and its reduction due to the formation of calcium and strontium sulfate scales during waterflooding using multilayer perceptron, radial basis function network, and coreflooding test data. To achieve the maximum efficiency, number of neurons, training function, and activation function were optimized for a multilayer perceptron model and spread parameter was optimized for a radial basis function model. The radial basis function model only could predict trend of permeability ratio reduction in the performance stage, but the multilayer perceptron model predicted permeability ratio after waterflooding with a total average absolute deviation of 0.56%.
引用
下载
收藏
页码:650 / 660
页数:11
相关论文
共 50 条
  • [1] Prediction of corneal permeability using artificial neural networks
    Agatonovic-Kustrin, S
    Evans, A
    Alany, RG
    PHARMAZIE, 2003, 58 (10): : 725 - 729
  • [2] Prediction of the air permeability of woven fabrics using neural networks
    Cay, Ahmet
    Vassiliadis, Savvas
    Rangoussi, Maria
    Tarakcioglu, Isik
    INTERNATIONAL JOURNAL OF CLOTHING SCIENCE AND TECHNOLOGY, 2007, 19 (1-2) : 18 - 35
  • [3] Prediction of permeability of porous media using optimized convolutional neural networks
    Ramos, Eliaquim M.
    Borges, Marcio R.
    Giraldi, Gilson A.
    Schulze, Bruno
    Bernardo, Felipe
    COMPUTATIONAL GEOSCIENCES, 2023, 27 (01) : 1 - 34
  • [4] Prediction of permeability of porous media using optimized convolutional neural networks
    Eliaquim M. Ramos
    Marcio R. Borges
    Gilson A. Giraldi
    Bruno Schulze
    Felipe Bernardo
    Computational Geosciences, 2023, 27 : 1 - 34
  • [5] Neural networks for the prediction of polymer permeability to gases
    Hasnaoui, Hanaa
    Krea, Mohamed
    Roizard, Denis
    JOURNAL OF MEMBRANE SCIENCE, 2017, 541 : 541 - 549
  • [6] Bayesian neural networks: A new tool for permeability prediction
    Qu, DY
    Bruce, AG
    Wong, PM
    ADVANCES IN INTELLIGENT SYSTEMS: THEORY AND APPLICATIONS, 2000, 59 : 1 - 6
  • [7] Using Neural Networks and Ensemble Techniques based on Decision Trees for Skin Permeability Prediction
    Busatlic, Emir
    Osmanovic, Ahmed
    Jakupovic, Alma
    Nuhic, Jasna
    Hodzic, Adnan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING 2017 (CMBEBIH 2017), 2017, 62 : 41 - 50
  • [8] Permeability Prediction for Expansive Soil Based on Physical Properties Using Artifiicial Neural Networks
    Fatnanta, Ferry
    Suprayogi, Imam
    Ranata, Nicola Rabb
    Nugroho, Soewignjo Agus
    Putra, Agus Ika
    MAKARA JOURNAL OF TECHNOLOGY, 2023, 27 (02): : 51 - 57
  • [9] Prediction of permeability from wire-line logs using artificial neural networks
    Arpat, G.B.
    Proceedings - SPE Annual Technical Conference and Exhibition, 1997, Omega (Pt 2): : 531 - 538
  • [10] Prediction of permeability reduction by external particle invasion using Artificial Neural Networks and Fuzzy Models
    Zuluaga, E
    Alvarez, HD
    Velasquez, JD
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 2002, 41 (06): : 19 - 24