A NEW FRACTIONAL DERIVATIVE MODEL FOR THE ANOMALOUS DIFFUSION PROBLEM

被引:9
|
作者
Chen, Zhanqing [1 ,2 ]
Qiu, Peitao [1 ,3 ,4 ]
Yang, Xiao-Jun [1 ]
Feng, Yiying [2 ]
Liu, Jiangen
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou, Jiangsu, Peoples R China
[3] Xuzhou Univ Technol, Sch Civil Engn, Xuzhou, Jiangsu, Peoples R China
[4] China Univ Min & Technol, Sch Math, Xuzhou, Jiangsu, Peoples R China
来源
THERMAL SCIENCE | 2019年 / 23卷
关键词
fractional derivative; exponential decay kernel; anomalous diffusion; analytical solution; Laplace transform;
D O I
10.2298/TSCI180912253C
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, a new fractional derivative within the exponential decay kernel is addressed for the first time. A new anomalous diffusion model is proposed to describe the heat-conduction problem. With the use of the Laplace transform, the analytical solution is discussed in detail. The presented result is as an accurate and efficient approach proposed for the heat-conduction problem in the complex phenomena.
引用
收藏
页码:S1005 / S1011
页数:7
相关论文
共 50 条
  • [21] A VARIABLE-ORDER FRACTAL DERIVATIVE MODEL FOR ANOMALOUS DIFFUSION
    Liu, Xiaoting
    Sun, Hong-Guang
    Lazarevic, Mihailo P.
    Fu, Zhuojia
    [J]. THERMAL SCIENCE, 2017, 21 (01): : 51 - 59
  • [22] An Inverse Problem of Recovering the Variable Order of the Derivative in a Fractional Diffusion Equation
    Artyushin, A. N.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (04) : 796 - 806
  • [23] On a backward problem for fractional diffusion equation with Riemann-Liouville derivative
    Nguyen Huy Tuan
    Nguyen Hoang Tuan
    Baleanu, Dumitru
    Tran Ngoc Thach
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (03) : 1292 - 1312
  • [24] An Inverse Problem of Recovering the Variable Order of the Derivative in a Fractional Diffusion Equation
    A. N. Artyushin
    [J]. Siberian Mathematical Journal, 2023, 64 : 796 - 806
  • [25] An inverse problem for a nonlinear diffusion equation with time- fractional derivative
    Tatar, Salih
    Ulusoy, Suleyman
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2017, 25 (02): : 185 - 193
  • [26] A diffusion-convection problem with a fractional derivative along the trajectory of motion
    Lapin, Alexander, V
    Shaidurov, Vladimir V.
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2021, 36 (03) : 157 - 163
  • [27] FUNDAMENTAL SOLUTION OF THE MODEL EQUATION OF ANOMALOUS DIFFUSION OF FRACTIONAL ORDER
    Khushtova, F. G.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2015, 19 (04): : 722 - 735
  • [28] A NEW GENERAL FRACTIONAL-ORDER DERIVATIVE WITH RABOTNOV FRACTIONAL-EXPONENTIAL KERNEL APPLIED TO MODEL THE ANOMALOUS HEAT TRANSFER
    Yang, Xiao-Jun
    Abdel-Aty, Mahmoud
    Cattani, Carlo
    [J]. THERMAL SCIENCE, 2019, 23 (03): : 1677 - 1681
  • [29] Characterizing time dependent anomalous diffusion process: A survey on fractional derivative and nonlinear models
    Wei, Song
    Chen, Wen
    Hon, Y. C.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 462 : 1244 - 1251
  • [30] An Efficient Numerical Method for Fractional Advection-Diffusion-Reaction Problem with RLC Fractional Derivative
    Maji, Sandip
    Natesan, Srinivasan
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (06)