FUNDAMENTAL SOLUTION OF THE MODEL EQUATION OF ANOMALOUS DIFFUSION OF FRACTIONAL ORDER

被引:3
|
作者
Khushtova, F. G. [1 ]
机构
[1] Inst Appl Math & Automat, Dept CAD Mixed Syst & Management, 89 A Shortanova St, Nalchik 360000, Russia
关键词
anomalous diffusion; diffusion fractional order; Riemann-Liouville operator; fundamental solution; general representation of solution; modified Bessel function; Wright function; integral transformation with Wright function in kernel;
D O I
10.14498/vsgtu1445
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fundamental solution of the model equation of anomalous diffusion with Riemann-Liouville operator is constructed. Using the properties of the integral transformation with Wright function in kernel, we give estimates for the fundamental solution. When the considered equation transformes into the diffusion equation of fractional order, constructed fundamental solution goes into the corresponding fundamental solution of the diffusion equation of fractional order. General solution of the model equation of anomalous diffusion of fractional order is constructed.
引用
收藏
页码:722 / 735
页数:14
相关论文
共 50 条
  • [1] The fundamental solution of a diffusion-wave equation of fractional order
    Pskhu, A. V.
    [J]. IZVESTIYA MATHEMATICS, 2009, 73 (02) : 351 - 392
  • [2] FRACTIONAL MODEL EQUATION FOR ANOMALOUS DIFFUSION
    METZLER, R
    GLOCKLE, WG
    NONNENMACHER, TF
    [J]. PHYSICA A, 1994, 211 (01): : 13 - 24
  • [3] Fundamental solution of the tempered fractional diffusion equation
    Liemert, Andre
    Kienle, Alwin
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (11)
  • [4] Fundamental solution of a multi-dimensional distributed order fractional diffusion equation
    Ansari, Alireza
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (04):
  • [5] Fundamental solution of a multi-dimensional distributed order fractional diffusion equation
    Alireza Ansari
    [J]. The European Physical Journal Plus, 136
  • [6] Iterative Solution of Fractional Diffusion Equation Modelling Anomalous Diffusion
    Elsaid, A.
    Shamseldeen, S.
    Madkour, S.
    [J]. APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2016, 11 (02): : 815 - 827
  • [7] Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order
    Shen S.
    Liu F.
    Anh V.
    [J]. Journal of Applied Mathematics and Computing, 2008, 28 (1-2) : 147 - 164
  • [8] Fundamental Solution of the Fractional Diffusion Equation with a Singular Drift*
    Jakubowski T.
    [J]. Journal of Mathematical Sciences, 2016, 218 (2) : 137 - 153
  • [9] Solution of the fundamental linear fractional order differential equation
    Charef, A.
    Assabaa, M.
    Santouh, Z.
    [J]. ICINCO 2007: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL SPSMC: SIGNAL PROCESSING, SYSTEMS MODELING AND CONTROL, 2007, : 407 - 413
  • [10] Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density
    Gorenflo, Rudolf
    Luchko, Yuri
    Stojanovic, Mirjana
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (02) : 297 - 316