Alternative Hamiltonian descriptions and statistical mechanics

被引:5
|
作者
Ercolessi, E
Morandi, G
Marmo, G
机构
[1] Univ Bologna, Dipartmento Fis, INFM, I-40127 Bologna, Italy
[2] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
[3] Ist Nazl Fis Nucl, I-80126 Naples, Italy
来源
关键词
alternative Hamiltonians; statistical mechanics;
D O I
10.1142/S0217751X02009898
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We argue here that, just as it happens in classical and quantum mechanics, where it has been proven that alternative Hamiltonian descriptions can be compatible with a given set of equations of motion, the same holds true in the realm of statistical mechanics, i.e. that alternative Hamiltonian descriptions do lead to the same thermodynamical description of any physical system.
引用
收藏
页码:3779 / 3788
页数:10
相关论文
共 50 条
  • [41] HAMILTONIAN MECHANICS AND GEOMETRY
    MACLANE, S
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (06): : 570 - &
  • [42] Contact Hamiltonian mechanics
    Bravetti, Alessandro
    Cruz, Hans
    Tapias, Diego
    ANNALS OF PHYSICS, 2017, 376 : 17 - 39
  • [43] HAMILTONIAN MECHANICS OF FIELDS
    GOOD, RH
    PHYSICAL REVIEW, 1954, 93 (01): : 239 - 243
  • [44] Synthetic Hamiltonian mechanics
    Hirokazu Nishimura
    International Journal of Theoretical Physics, 1997, 36 : 259 - 279
  • [45] On Hamiltonian continuum mechanics
    Pavelka, Michal
    Peshkov, Ilya
    Klika, Vaclav
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 408
  • [46] Randomized Hamiltonian Mechanics
    Yu. N. Orlov
    V. Zh. Sakbaev
    O. G. Smolyanov
    Doklady Mathematics, 2019, 99 : 313 - 316
  • [47] A solvable problem in statistical mechanics: The dipole-type Hamiltonian mean field model
    Atenas, Boris
    Curilef, Sergio
    ANNALS OF PHYSICS, 2019, 409
  • [48] Out-of-Equilibrium Statistical Mechanics in a Hamiltonian System with Mean-Field Interaction
    Yamaguchi, Yoshiyuki Y.
    PROCEEDINGS OF THE THIRD UN/ESA/NASA WORKSHOP ON THE INTERNATIONAL HELIOPHYSICAL YEAR 2007 AND BASIC SPACE SCIENCE: NATIONAL ASTRONOMICAL OBSERVATORY OF JAPAN, 2010, : 25 - 33
  • [49] Comment on "Failure of the Volume Function in Granular Statistical Mechanics and an Alternative Formulation"
    Becker, Volker
    Kassner, Klaus
    PHYSICAL REVIEW LETTERS, 2017, 119 (03)
  • [50] Hamiltonian Descriptions of General Laplacian Evolutions
    Gustafsson, Bjorn
    Lin, Yu-Lin
    LAPLACIAN GROWTH ON BRANCHED RIEMANN SURFACES, 2021, 2287 : 113 - 127