Alternative Hamiltonian descriptions and statistical mechanics

被引:5
|
作者
Ercolessi, E
Morandi, G
Marmo, G
机构
[1] Univ Bologna, Dipartmento Fis, INFM, I-40127 Bologna, Italy
[2] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
[3] Ist Nazl Fis Nucl, I-80126 Naples, Italy
来源
关键词
alternative Hamiltonians; statistical mechanics;
D O I
10.1142/S0217751X02009898
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We argue here that, just as it happens in classical and quantum mechanics, where it has been proven that alternative Hamiltonian descriptions can be compatible with a given set of equations of motion, the same holds true in the realm of statistical mechanics, i.e. that alternative Hamiltonian descriptions do lead to the same thermodynamical description of any physical system.
引用
收藏
页码:3779 / 3788
页数:10
相关论文
共 50 条
  • [31] Contact Hamiltonian mechanics. An extension of symplectic Hamiltonian mechanics
    Cruz, Hans
    SYMMETRIES IN SCIENCE XVII, 2018, 1071
  • [32] Mean field statistical mechanics of model Hamiltonian for hydrogen bonded phase transitions
    Rosli, Mohd Mustaqim
    Lee, Beck Sim
    Fun, Hoong Kun
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (02): : 376 - 382
  • [33] CHAOTIC BEHAVIOR IN NONLINEAR HAMILTONIAN-SYSTEMS AND EQUILIBRIUM STATISTICAL-MECHANICS
    LIVI, R
    PETTINI, M
    RUFFO, S
    VULPIANI, A
    JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (3-4) : 539 - 559
  • [34] Descriptions in quantum mechanics
    Krause, Decio
    LOGIC JOURNAL OF THE IGPL, 2017, 25 (04) : 512 - 523
  • [35] Failure of the Volume Function in Granular Statistical Mechanics and an Alternative Formulation
    Blumenfeld, Raphael
    Amitai, Shahar
    Jordan, Joe F.
    Hihinashvili, Rebecca
    PHYSICAL REVIEW LETTERS, 2016, 116 (14)
  • [36] An alternative approach to calculate the density of states in nonextensive statistical mechanics
    Babacan, H.
    PHYSICS LETTERS A, 2011, 375 (03) : 360 - 362
  • [37] How, Why and When Tsallis Statistical Mechanics Provides Precise Descriptions of Natural Phenomena
    Robledo, Alberto
    Velarde, Carlos
    ENTROPY, 2022, 24 (12)
  • [38] Randomized Hamiltonian Mechanics
    Orlov, Yu. N.
    Sakbaev, V. Zh.
    Smolyanov, O. G.
    DOKLADY MATHEMATICS, 2019, 99 (03) : 313 - 316
  • [39] Synthetic Hamiltonian Mechanics
    Nishimura, H.
    International Journal of Theoretical Physics, 36 (01):
  • [40] Synthetic Hamiltonian mechanics
    Nishimura, H
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (01) : 259 - 279