Alternative Hamiltonian descriptions and statistical mechanics

被引:5
|
作者
Ercolessi, E
Morandi, G
Marmo, G
机构
[1] Univ Bologna, Dipartmento Fis, INFM, I-40127 Bologna, Italy
[2] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
[3] Ist Nazl Fis Nucl, I-80126 Naples, Italy
来源
关键词
alternative Hamiltonians; statistical mechanics;
D O I
10.1142/S0217751X02009898
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We argue here that, just as it happens in classical and quantum mechanics, where it has been proven that alternative Hamiltonian descriptions can be compatible with a given set of equations of motion, the same holds true in the realm of statistical mechanics, i.e. that alternative Hamiltonian descriptions do lead to the same thermodynamical description of any physical system.
引用
收藏
页码:3779 / 3788
页数:10
相关论文
共 50 条
  • [1] Hamiltonian statistical mechanics
    Brody, Dorje C.
    Ellis, David C. P.
    Holm, Darryl D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (50)
  • [2] Alternative descriptions in quaternionic quantum mechanics
    Blasi, A
    Scolarici, G
    Solombrino, L
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (04)
  • [3] Classical and quantum systems: Alternative Hamiltonian descriptions
    Marmo, G
    Scolarici, G
    Simoni, A
    Ventriglia, F
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 144 (02) : 1190 - 1205
  • [4] Classical and Quantum Systems: Alternative Hamiltonian Descriptions
    G. Marmo
    G. Scolarici
    A. Simoni
    F. Ventriglia
    [J]. Theoretical and Mathematical Physics, 2005, 144 : 1190 - 1205
  • [5] An Alternative Interpretation of Statistical Mechanics
    C. D. McCoy
    [J]. Erkenntnis, 2020, 85 : 1 - 21
  • [6] An Alternative Interpretation of Statistical Mechanics
    McCoy, C. D.
    [J]. ERKENNTNIS, 2020, 85 (01) : 1 - 21
  • [7] Hamiltonian dynamics, nanosystems, and nonequilibrium statistical mechanics
    Gaspard, Pierre
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 369 (01) : 201 - 246
  • [8] Statistical mechanics of Hamiltonian adaptive resolution simulations
    Espanol, P.
    Delgado-Buscalioni, R.
    Everaers, R.
    Potestio, R.
    Donadio, D.
    Kremer, K.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (06):
  • [9] Remarks on non-Hamiltonian statistical mechanics
    Ramshaw, JD
    [J]. EUROPHYSICS LETTERS, 2002, 59 (03): : 319 - 323
  • [10] Geometric approach to Hamiltonian dynamics and statistical mechanics
    Casetti, L
    Pettini, M
    Cohen, EGD
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 337 (03): : 237 - 341