Deep Learning on Private Data

被引:0
|
作者
Fasano, Andrew [1 ,2 ]
Leek, Tim [1 ]
Dolan-Gavitt, Brendan [3 ]
Bundt, Josh [2 ,4 ]
机构
[1] MIT Lincoln Lab, Lexington, MA 02421 USA
[2] Northeastern Univ, Boston, MA 02115 USA
[3] NYU, New York, NY 10003 USA
[4] US Army, Cyber Inst, Washington, DC 20310 USA
关键词
Training; Protocols; Cryptography; Servers; Computational modeling; Data models; Logic gates;
D O I
10.1109/MSEC.2019.2933682
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emerging complex deep neural networks require vast amounts of data to achieve high precision. However, the information is often collected from user logs and personal data. In this article, we summarize recent cryptographic methodologies for provably privacy-preserving deep learning and inference.
引用
收藏
页码:84 / 88
页数:5
相关论文
共 50 条
  • [1] Deep Learning on Private Data
    Riazi, M. Sadegh
    Darvish Rouani, Bita
    Koushanfar, Farinaz
    [J]. IEEE Security and Privacy, 2019, 17 (06): : 54 - 63
  • [2] Public Data Assisted Differential Private Deep Learning
    Yang, Jiaxi
    Cheng, Xiang
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [3] Bounding Training Data Reconstruction in Private (Deep) Learning
    Guo, Chuan
    Karrer, Brian
    Chaudhuri, Kamalika
    van der Maaten, Laurens
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [4] Differential Private Deep Learning Models for Analyzing Breast Cancer Omics Data
    Islam, Md. Mohaiminul
    Mohammed, Noman
    Wang, Yang
    Hu, Pingzhao
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12
  • [5] Tutorial on Fair and Private Deep Learning
    Padala, Manisha
    Damle, Sankarshan
    Gujar, Sujit
    [J]. PROCEEDINGS OF 7TH JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MANAGEMENT OF DATA, CODS-COMAD 2024, 2024, : 510 - 513
  • [6] Accurate Differentially Private Deep Learning on the Edge
    Han, Rui
    Li, Dong
    Ouyang, Junyan
    Liu, Chi Harold
    Wang, Guoren
    Wu, Dapeng
    Chen, Lydia Y.
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (09) : 2231 - 2247
  • [7] Circa: Stochastic ReLUs for Private Deep Learning
    Ghodsi, Zahra
    Jha, Nandan Kumar
    Reagen, Brandon
    Garg, Siddharth
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [8] Differentially Private Model Publishing for Deep Learning
    Yu, Lei
    Liu, Ling
    Pu, Calton
    Gursoy, Mehmet Emre
    Truex, Stacey
    [J]. 2019 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP 2019), 2019, : 332 - 349
  • [9] Private, yet Practical, Multiparty Deep Learning
    Zhang, Xinyang
    Ji, Shouling
    Wang, Hui
    Wang, Ting
    [J]. 2017 IEEE 37TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2017), 2017, : 1442 - 1452
  • [10] SPEED: secure, PrivatE, and efficient deep learning
    Grivet Sebert, Arnaud
    Pinot, Rafael
    Zuber, Martin
    Gouy-Pailler, Cedric
    Sirdey, Renaud
    [J]. MACHINE LEARNING, 2021, 110 (04) : 675 - 694