Deep Learning on Private Data

被引:0
|
作者
Fasano, Andrew [1 ,2 ]
Leek, Tim [1 ]
Dolan-Gavitt, Brendan [3 ]
Bundt, Josh [2 ,4 ]
机构
[1] MIT Lincoln Lab, Lexington, MA 02421 USA
[2] Northeastern Univ, Boston, MA 02115 USA
[3] NYU, New York, NY 10003 USA
[4] US Army, Cyber Inst, Washington, DC 20310 USA
关键词
Training; Protocols; Cryptography; Servers; Computational modeling; Data models; Logic gates;
D O I
10.1109/MSEC.2019.2933682
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emerging complex deep neural networks require vast amounts of data to achieve high precision. However, the information is often collected from user logs and personal data. In this article, we summarize recent cryptographic methodologies for provably privacy-preserving deep learning and inference.
引用
收藏
页码:84 / 88
页数:5
相关论文
共 50 条
  • [31] Limits of Private Learning with Access to Public Data
    Alon, Noga
    Bassily, Raef
    Moran, Shay
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [32] Differentially Private Distance Learning in Categorical Data
    Elena Battaglia
    Simone Celano
    Ruggero G. Pensa
    [J]. Data Mining and Knowledge Discovery, 2021, 35 : 2050 - 2088
  • [33] Differentially private Bayesian learning on distributed data
    Heikkila, Mikko
    Lagerspetz, Eemil
    Kaski, Samuel
    Shimizu, Kana
    Tarkoma, Sasu
    Honkela, Antti
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [34] Private data release via learning thresholds
    Hardt, Moritz
    Rothblum, Guy N.
    Servedio, Rocco A.
    [J]. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 2012, : 168 - 187
  • [35] Optimized Deep Learning for Enhanced Trade-off in Differentially Private Learning
    Geetha, P.
    Naikodi, Chandrakant
    Suresh, L.
    [J]. ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2021, 11 (01) : 6745 - 6751
  • [36] A deep learning approach to private data sharing of medical images using conditional generative adversarial networks (GANs)
    Sun, Hanxi
    Plawinski, Jason
    Subramaniam, Sajanth
    Jamaludin, Amir
    Kadir, Timor
    Readie, Aimee
    Ligozio, Gregory
    Ohlssen, David I.
    Baillie, Mark
    Coroller, Thibaud
    [J]. PLOS ONE, 2023, 18 (07):
  • [37] Differentially-Private Deep Learning from an Optimization Perspective
    Xiang, Liyao
    Yang, Jingbo
    Li, Baochun
    [J]. IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2019), 2019, : 559 - 567
  • [38] Terahertz Metamaterial Intelligent Identification by Private Preserving Deep Learning
    Liu, Feifei
    Zhang, Weihao
    Sun, Yu
    Liu, Jianwei
    Wu, Xiaojun
    [J]. 2020 45TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2020,
  • [39] An optimal (ε, δ)-differentially private learning of distributed deep fuzzy models
    Kumar, Mohit
    Rossbory, Michael
    Moser, Bernhard A.
    Freudenthaler, Bernhard
    [J]. INFORMATION SCIENCES, 2021, 546 : 87 - 120
  • [40] Deep Efficient Private Neighbor Generation for Subgraph Federated Learning
    Zhang, Ke
    Sun, Lichao
    Ding, Bolin
    Yiu, Siu Ming
    Yang, Carl
    [J]. PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 806 - 814