Deep Learning on Private Data

被引:0
|
作者
Riazi M.S. [1 ]
Darvish Rouani B. [2 ]
Koushanfar F. [1 ]
机构
[1] Electrical and Computer Engineering, University of California San Diego
来源
IEEE Security and Privacy | 2019年 / 17卷 / 06期
关键词
Privacy-preserving techniques;
D O I
10.1109/MSEC.2019.2935666
中图分类号
学科分类号
摘要
Emerging complex deep neural networks require vast amounts of data to achieve high precision. However, the information is often collected from user logs and personal data. In this article, we summarize recent cryptographic methodologies for provably privacy-preserving deep learning and inference. © 2003-2012 IEEE.
引用
收藏
页码:54 / 63
页数:9
相关论文
共 50 条
  • [1] Deep Learning on Private Data
    Fasano, Andrew
    Leek, Tim
    Dolan-Gavitt, Brendan
    Bundt, Josh
    IEEE SECURITY & PRIVACY, 2019, 17 (06) : 84 - 88
  • [2] Bounding Training Data Reconstruction in Private (Deep) Learning
    Guo, Chuan
    Karrer, Brian
    Chaudhuri, Kamalika
    van der Maaten, Laurens
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [3] Public Data Assisted Differential Private Deep Learning
    Yang, Jiaxi
    Cheng, Xiang
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [4] Differential Private Deep Learning Models for Analyzing Breast Cancer Omics Data
    Islam, Md. Mohaiminul
    Mohammed, Noman
    Wang, Yang
    Hu, Pingzhao
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [5] Tutorial on Fair and Private Deep Learning
    Padala, Manisha
    Damle, Sankarshan
    Gujar, Sujit
    PROCEEDINGS OF 7TH JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MANAGEMENT OF DATA, CODS-COMAD 2024, 2024, : 510 - 513
  • [6] Circa: Stochastic ReLUs for Private Deep Learning
    Ghodsi, Zahra
    Jha, Nandan Kumar
    Reagen, Brandon
    Garg, Siddharth
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [7] Accurate Differentially Private Deep Learning on the Edge
    Han, Rui
    Li, Dong
    Ouyang, Junyan
    Liu, Chi Harold
    Wang, Guoren
    Wu, Dapeng
    Chen, Lydia Y.
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (09) : 2231 - 2247
  • [8] SPEED: secure, PrivatE, and efficient deep learning
    Grivet Sebert, Arnaud
    Pinot, Rafael
    Zuber, Martin
    Gouy-Pailler, Cedric
    Sirdey, Renaud
    MACHINE LEARNING, 2021, 110 (04) : 675 - 694
  • [9] Private and Secure Distributed Deep Learning: A Survey
    Allaart, Corinne
    Amiri, Saba
    Bal, Henri
    Belloum, Adam
    Gommans, Leon
    Van Halteren, Aart
    Klous, Sander
    ACM Computing Surveys, 2024, 57 (04)
  • [10] SPEED: secure, PrivatE, and efficient deep learning
    Arnaud Grivet Sébert
    Rafaël Pinot
    Martin Zuber
    Cédric Gouy-Pailler
    Renaud Sirdey
    Machine Learning, 2021, 110 : 675 - 694