Deep Learning on Private Data

被引:0
|
作者
Riazi M.S. [1 ]
Darvish Rouani B. [2 ]
Koushanfar F. [1 ]
机构
[1] Electrical and Computer Engineering, University of California San Diego
来源
IEEE Security and Privacy | 2019年 / 17卷 / 06期
关键词
Privacy-preserving techniques;
D O I
10.1109/MSEC.2019.2935666
中图分类号
学科分类号
摘要
Emerging complex deep neural networks require vast amounts of data to achieve high precision. However, the information is often collected from user logs and personal data. In this article, we summarize recent cryptographic methodologies for provably privacy-preserving deep learning and inference. © 2003-2012 IEEE.
引用
收藏
页码:54 / 63
页数:9
相关论文
共 50 条
  • [21] Differentially-Private Deep Learning With Directional Noise
    Xiang, Liyao
    Li, Weiting
    Yang, Jungang
    Wang, Xinbing
    Li, Baochun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (05) : 2599 - 2612
  • [22] Private Body Part Detection using Deep Learning
    Tabone, Andre
    Bonnici, Alexandra
    Cristina, Stefania
    Farrugia, Reuben
    Camilleri, Kenneth
    ICPRAM: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2020, : 205 - 211
  • [23] Gradient Self-alignment in Private Deep Learning
    Bani-Harouni, David
    Mueller, Tamara T.
    Rueckert, Daniel
    Kaissis, Georgios
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023 WORKSHOPS, 2023, 14393 : 89 - 97
  • [24] Understanding Urban Area Attractiveness Based on Private Car Trajectory Data Using a Deep Learning Approach
    Xiao, Zhu
    Fang, Hui
    Jiang, Hongbo
    Bai, Jing
    Havyarimana, Vincent
    Chen, Hongyang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 12343 - 12352
  • [25] Big Data and Deep Learning
    Wilamowski, B. M.
    Wu, Bo
    Korniak, Janusz
    INES 2016 20TH JUBILEE IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS, 2016, : 11 - 16
  • [26] Synthetic Data for Deep Learning
    Horvath, Blanka
    QUANTITATIVE FINANCE, 2022, 22 (03) : 423 - 425
  • [27] Deep Learning for Big Data
    Correia, Filipe
    Madureira, Ana
    Bernardino, Jorge
    INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS, IBICA 2021, 2022, 419 : 205 - 215
  • [28] Deep learning for geospatial data
    Wegner, Jan Dirk
    PROCEEDINGS OF THE 34TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2021), 2021, : 4045 - 4079
  • [29] Private AI: Machine Learning on Encrypted Data
    Lauter, Kristin
    RECENT ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS, 2022, : 97 - 113
  • [30] Differentially Private Federated Learning on Heterogeneous Data
    Noble, Maxence
    Bellet, Aurelien
    Dieuleveut, Aymeric
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151