Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures

被引:1
|
作者
Olsen, L [1 ]
机构
[1] Univ St Andrews, Dept Math, St Andrews KY16 9SS, Fife, Scotland
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let mu be a Borel probability measure on R-d. We study the Hausdorff dimension and the packing dimension of the multifractal Hausdorff measure H-mu(q,t) and the multifractal packing measure P-mu(q,t) introduced in [L. Olsen, A multifractal formalism, Advances in Mathematics 116 (1995), 82-196]. Let b(mu) denote the multifractal Hausdorff dimension function and let B-mu denote the multifractal packing dimension function introduced in [Olsen, op cit]. For a fixed q is an element of R, we obtain bounds for the Hausdorff dimension and the packing dimension of H-mu(q,b mu(q)) and P-mu(q,B mu(q)) in terms of the subdifferential of b(mu) and B-mu at g. For q = 1, our result reduces to [GRAPHICS] where D-Bmu(1) and D+Bmu(1) denote the left and right derivative of B-mu at 1. Inequality (*) improves a similar result obtained independently by Y. Heurteaux and S.-Z. Ngai. It follows from (*) that if the mulifractal box dimension spectrum (or L-q spectrum) tau(mu) of mu is differentiable at 1 then -tau(mu)'(1) equals the entropy dimension (or information dimension) of mu. This result has been conjectured in the physics literature and proved rigorously in certain special cases.
引用
收藏
页码:109 / 129
页数:21
相关论文
共 50 条
  • [41] A Multifractal Formalism for Hewitt–Stromberg Measures
    Najmeddine Attia
    Bilel Selmi
    The Journal of Geometric Analysis, 2021, 31 : 825 - 862
  • [42] SUBSETS OF POSITIVE AND FINITE MULTIFRACTAL MEASURES
    Attia, Najmeddine
    Selmi, Bilel
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (02)
  • [43] Typical multifractal box dimensions of measures
    Olsen, L.
    FUNDAMENTA MATHEMATICAE, 2011, 211 (03) : 245 - 266
  • [44] Fractal and Multifractal Dimensions of Prevalent Measures
    Olsen, L.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (02) : 661 - 690
  • [45] Multifractal measures and a weak separation condition
    Lau, KS
    Ngai, SM
    ADVANCES IN MATHEMATICS, 1999, 141 (01) : 45 - 96
  • [46] INVERSE PROBLEMS IN MULTIFRACTAL ANALYSIS OF MEASURES
    Barral, Julien
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2015, 48 (06): : 1457 - 1510
  • [47] Texture segmentation using multifractal measures
    Chen, H
    Kinsner, W
    IEEE WESCANEX 97 COMMUNICATIONS, POWER AND COMPUTING CONFERENCE PROCEEDINGS, 1997, : 222 - 227
  • [48] Multifractal Measures of Earthquakes in West Taiwan
    Pure Appl Geophys, 1 (131):
  • [49] Multifractal measures in fractional iterative maps
    Kim, K
    Kim, GH
    Lee, JR
    Choi, JS
    Kong, YS
    Henry, BI
    Yum, MK
    Odagaki, T
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (02) : 229 - 233
  • [50] The multifractal spectrum of some Moran measures
    Wu, M
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (08): : 1097 - 1112