A Comparative Study of Suitability of Certain Features in Classification of Bharatanatyam Mudra Images Using Artificial Neural Network

被引:16
|
作者
Anami, Basavaraj S. [1 ]
Bhandage, Venkatesh A. [2 ]
机构
[1] KLE Inst Technol, Hubballi, Karnataka, India
[2] Tontadarya Coll Engn, Gadag, Karnataka, India
关键词
Mudra; Contour of mudras; Hu-moments; Eigenvalues; Intersections; Artificial neural network; Convolutional neural network; RECOGNITION;
D O I
10.1007/s11063-018-9921-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bharatanatyam is an Indian classical dance, which is composed of various body postures and hand gestures. This ancient art of dance has to be studied under the supervision of experts but at present there is dearth of Bharatanatyam dance experts. This has led to take leverage of technology to make this dance self pursuable. Thus, it is the motivation for automation of identification of mudras through image processing. This paper presents a 3-stage methodology for classification of single hand mudra images. The first stage involves acquisition and preprocessing of images of mudras to obtain contours of mudras using canny edge detector. In the second stage, the features, namely, Hu-moments, eigenvalues and intersections are extracted. In the third stage artificial neural network is used for classification of mudras. The comparative study of classification accuracies of using different features is provided at the end. To corroborate the obtained classification accuracies, a deep learning approach, namely, convolutional neural network is adopted. The work finds application in e-learning of 'Bharatanatyam' dance in particular and dances in general and automation of commentary during concerts.
引用
收藏
页码:741 / 769
页数:29
相关论文
共 50 条
  • [41] SITE CLASSIFICATION FOR EUCALYPT STANDS USING ARTIFICIAL NEURAL NETWORK BASED ON ENVIRONMENTAL AND MANAGEMENT FEATURES
    Cosenza, Diogo Nepomuceno
    Vieira Soares, Alvaro Augusto
    Mazon de Alcantara, Aline Edwiges
    Lopes da Silva, Antonilmar Araujo
    Rode, Rafael
    Soares, Vicente Paulo
    Leite, Helio Garcia
    CERNE, 2017, 23 (03) : 310 - 320
  • [42] Classification of Histopathological Images Using Convolutional Neural Network
    Hatipoglu, Nuh
    Bilgin, Gokhan
    2014 4TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2014, : 295 - 300
  • [43] Malware Analysis and Classification using Artificial Neural Network
    Makandar, Aziz
    Patrot, Anita
    2015 INTERNATIONAL CONFERENCE ON TRENDS IN AUTOMATION, COMMUNICATIONS AND COMPUTING TECHNOLOGY (I-TACT-15), 2015,
  • [44] Classification of the ECG Signal Using Artificial Neural Network
    Weems, Andrew
    Harding, Mike
    Choi, Anthony
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNOLOGIES AND ENGINEERING SYSTEMS (ICITES2014), 2016, 345 : 545 - 555
  • [45] Classification of Tank Images Using Convolutional Neural Network
    Liu, Ying
    Yu, Yongbin
    Wang, Lin
    Nyima, Tashi
    Zhaxi, Nima
    Huang, Hang
    Deng, Quanxin
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 210 - 214
  • [46] Classification of Breast Abnormalities Using Artificial Neural Network
    Zaman, Nur Atiqah Kamarul
    Rahman, Wan Eny Zarina Wan Abdul
    Jumaat, Abdul Kadir
    Yasiran, Siti Salmah
    INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2014 (ICOMEIA 2014), 2015, 1660
  • [47] Classification of Galaxy Morphologies using Artificial Neural Network
    Biswas, Manish
    Adlak, Ritesh
    2018 4TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2018,
  • [48] Classification of breast lesions using artificial neural network
    Mashor, M. Y.
    Esugasini, S.
    Isa, N. A. Mat
    Othman, N. H.
    3RD KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2006, 2007, 15 : 45 - +
  • [49] Facial Classification using Artificial Neural Network Techniques
    Nor'aini, A. J.
    Fatimah, Z.
    Norzilah, R.
    INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2011), 2011, 8285
  • [50] Classification of Robotic Data using Artificial Neural Network
    Gopalapillai, Radhakrishnan
    Vidhya, J.
    Gupta, Deepa
    Sudarshan, T. S. B.
    2013 IEEE RECENT ADVANCES IN INTELLIGENT COMPUTATIONAL SYSTEMS (RAICS), 2013, : 333 - 337