Classification of the ECG Signal Using Artificial Neural Network

被引:4
|
作者
Weems, Andrew [1 ]
Harding, Mike [1 ]
Choi, Anthony [2 ]
机构
[1] Mercer Univ, Dept Biomed Engn, Macon, GA 31207 USA
[2] Mercer Univ, Dept Elect & Comp Engn, Macon, GA 31207 USA
关键词
Artificial neural network; ECG; MATLAB; Signal classification; Cardiac abnormalities; Cardiac arrhythmias; ACUTE MYOCARDIAL-INFARCTION; 12-LEAD ECG;
D O I
10.1007/978-3-319-17314-6_70
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recording of electrocardiogram (ECG) signals and the correlation to cardiovascular diseases are a major problem in today's society. A common abnormality is arrhythmia, which is unexpected variation in cardiac rhythm. The goal of this study is to analyze these types of signals and find a more efficient way to classify these signals. Currently, medical devices for detecting ECG signals are at least 85 % accurate in analyzing the data. Neural networks have progressed quickly over the past few years, and have the capability of recognizing many types of variation in these signals. The pattern recognition power of Artificial Neural Networks (ANNs) is a valuable tool when classifying ECG signals in cardiac patients. Data obtained from the PhysioBank ATM was used to analyze the structure of an ANN and the effect that it has on pattern recognition. The results show that only one misclassification occurred resulting in an accuracy of 96 %.
引用
下载
收藏
页码:545 / 555
页数:11
相关论文
共 50 条
  • [1] Analysis of ECG Signal and Classification of Heart Abnormalities Using Artificial Neural Network
    Debnath, Tanoy
    Hasan, Md. Mehedi
    Biswas, Tanwi
    2016 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2016, : 353 - 356
  • [2] FPGA IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK (ANN) FOR ECG SIGNAL CLASSIFICATION
    Vinaykumar, Shatharajupally
    Thilagavathy, R.
    2022 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2022, : 771 - 776
  • [3] ECG Signal Classification Based on Neural Network
    Al-Saffar, Bashar
    Ali, Yaseen Hadi
    Muslim, Ali M.
    Ali, Haider Abdullah
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND INTELLIGENT SYSTEMS, ICETIS 2022, VOL 2, 2023, 573 : 3 - 11
  • [4] Image Based ECG Signal Classification Using Convolutional Neural Network
    Hadiyoso, Sugondo
    Fahrozi, Farrel
    Hariyani, Yuli Sun
    Sulistyo, Mahmud Dwi
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2022, 18 (04) : 64 - 78
  • [5] ARTIFICIAL NEURAL NETWORK BASED ECG ARRHYTHMIA CLASSIFICATION
    Haseena, H.
    Joseph, Paul K.
    Mathew, Abraham T.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2009, 9 (04) : 507 - 525
  • [6] ECG signal classification with binarized convolutional neural network
    Wu, Qing
    Sun, Yangfan
    Yan, Hui
    Wu, Xundong
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 121
  • [7] PC-based ECG signal analysis using artificial neural network
    Chang, Ching-Su
    Chen, Hsing-Ton
    Tan, Tan-Hsu
    Chen, Yung-Fu
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 3334 - +
  • [8] Classification of ECG Signal Using Hybrid Feature Extraction and Neural Network Classifier
    Muthuvel, K.
    Suresh, L. Padma
    Alexander, T. Jerry
    Veni, S. H. Krishna
    POWER ELECTRONICS AND RENEWABLE ENERGY SYSTEMS, 2015, 326 : 1537 - 1544
  • [9] Abnormality Heartbeat Classification of ECG Signal Using Deep Neural Network and Autoencoder
    Putra, Bayu Wijaya
    Fachrurrozi, Muhammad
    Sanjaya, M. Rudi
    Firdaus
    Muliawati, Anita
    Mukti, Akhmad Noviar Satria
    Nurmaini, Siti
    2019 INTERNATIONAL CONFERENCE ON INFORMATICS, MULTIMEDIA, CYBER AND INFORMATION SYSTEM (ICIMCIS), 2019, : 213 - 217
  • [10] ECG Signal Classification using Wavelet Transform and Back Propagation Neural Network
    Rai, Hari Mohan
    Trivedi, Anurag
    2012 5TH INTERNATIONAL CONFERENCE ON COMPUTERS AND DEVICES FOR COMMUNICATION (CODEC), 2012,