Fracture toughness and the master curve for modified 9Cr-1Mo steel

被引:7
|
作者
Yoon, Ji-Hyun
Yoon, Eui-Pak
机构
[1] Hanyang Univ, Dept Mat Engn, Seoul 133791, South Korea
[2] Korea Atom Energy Res Inst, Taejon 305353, South Korea
关键词
modified; 9Cr-1Mo; master curve; SA508-Gr.3; reactor pressure vessel; fracture toughness; reference temperature; VHTR;
D O I
10.1007/BF03027747
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modified 9Cr-1Mo steel is a primary candidate material for the reactor pressure vessel of a Very High Temperature Gas-Cooled Reactor (VHTR) in the Korean Nuclear Hydrogen Development and Demonstration (NHDD) program. In this study, the T-0 reference temperature, J-R fracture resistance and Charpy impact properties were evaluated for commercial Grade 91 steel as part of the preliminary testing for a selection of the RPV material for the VHTR. The fracture toughness of the modified 9Cr-1Mo steel was compared with that of SA508-Gr.3. The objective of this study was to obtain the pre-irradiation fracture toughness properties of the modified 9Cr-1Mo steel as reference data for an investigation of radiation effects. Charpy impact properties of the modified 9Cr-1Mo steel were similartothose of SA508-Gr.3. To reference temperatures were measured as -67.7 and -72.4 degrees C from the tests with standard PCVN (pre-cracked Charpy V-notch) and half-sized PCVN specimens respectively, which were similar to the results for SA508-Gr.3. The K-Jc values of the modified 9Cr-1Mo steel with the test temperatures are successfully expressed by the Master Curve. The J-R fracture resistance of the modified 9Cr-1Mo steel at room temperature was nearly identical to that of SA508-Gr.3; in contrast, it was slightly higher at an elevated temperature.
引用
收藏
页码:477 / 482
页数:6
相关论文
共 50 条
  • [41] A toughness study of the weld heat-affected zone of a 9Cr-1Mo steel
    Moitra, A
    Parameswaran, P
    Sreenivasan, PR
    Mannan, SL
    MATERIALS CHARACTERIZATION, 2002, 48 (01) : 55 - 61
  • [42] Influence of Laves phase on creep strength of modified 9Cr-1Mo steel
    Zhang, X. Z.
    Wu, X. J.
    Liu, R.
    Liu, J.
    Yao, M. X.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 706 : 279 - 286
  • [43] Uniaxial creep and stress relaxation behavior of modified 9Cr-1Mo steel
    Guguloth, Krishna
    Swaminathan, J.
    Roy, Nilima
    Ghosh, R. N.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 684 : 683 - 696
  • [44] Effect of normalization temperature on the creep strength of modified 9Cr-1Mo steel
    Totemeier, T. C.
    Tian, H.
    Simpson, J. A.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2006, 37A (05): : 1519 - 1525
  • [45] Effects of Simulated Microstructure on the Creep Rupture of the Modified 9Cr-1Mo Steel
    T. H. Hsiao
    T. C. Chen
    S. L. Jeng
    T. J. Chung
    L. W. Tsay
    Journal of Materials Engineering and Performance, 2016, 25 : 4317 - 4325
  • [46] Ratcheting Fatigue Behavior of Modified 9Cr-1Mo Steel at Room Temperature
    Mishra, Prerna
    Rajpurohit, R. S.
    Srinivas, N. C. Santhi
    Sastry, G. V. S.
    Singh, Vakil
    METALS AND MATERIALS INTERNATIONAL, 2021, 27 (12) : 4922 - 4936
  • [47] Evaluation of creep damage in a welded joint of modified 9Cr-1Mo steel
    Li, Yongkui
    Monma, Yoshio
    Hongo, Hiromichi
    Tabuchi, Masaaki
    JOURNAL OF NUCLEAR MATERIALS, 2010, 405 (01) : 44 - 49
  • [48] Study of high-temperature oxidation of modified 9Cr-1Mo steel
    Peña-Ballesteros, Darío Yesid
    Vásquez-Quintero, Custodio
    Ingenieria y Universidad, 2011, 15 (02): : 359 - 372
  • [49] The evaluation of material degradation in modified 9Cr-1Mo steel by the electrochemical technique
    Hyun, Y
    Lee, J
    Kim, I
    ADVANCES IN NONDESTRUCTIVE EVALUATION, PT 1-3, 2004, 270-273 : 1206 - 1211
  • [50] Cyclic Deformation Behavior of Modified 9Cr-1Mo Steel at Elevated Temperatures
    Singh, Vakil
    Verma, Preeti
    MECHANICAL AND CREEP BEHAVIOR OF ADVANCED MATERIALS, 2017, : 195 - 206