Variable Ordering Selection for Cylindrical Algebraic Decomposition with Artificial Neural Networks

被引:5
|
作者
Chen, Changbo [1 ,2 ]
Zhu, Zhangpeng [1 ]
Chi, Haoyu [1 ,2 ]
机构
[1] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Automated Reasoning & Cognit, Chongqing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
来源
关键词
Cylindrical algebraic decomposition; Variable ordering; Machine learning; Neural network;
D O I
10.1007/978-3-030-52200-1_28
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Cylindrical algebraic decomposition (CAD) is a fundamental tool in computational real algebraic geometry. Previous studies have shown that machine learning (ML) based approaches may outperform traditional heuristic ones on selecting the best variable ordering when the number of variables n <= 4. One main challenge for handling the general case is the exponential explosion of number of different orderings when n increases. In this paper, we propose an iterative method for generating candidate variable orderings and an ML approach for selecting the best ordering from them via learning neural network classifiers. Experimentations show that this approach outperforms heuristic ones for n = 4, 5, 6.
引用
收藏
页码:281 / 291
页数:11
相关论文
共 50 条
  • [41] Tension softening curves described by algebraic formulas and artificial neural networks
    Alterman, Dariusz
    Akita, Hiroshi
    Kasperkiewicz, Janusz
    [J]. ADVANCES IN CONSTRUCTION MATERIALS 2007, 2007, : 723 - +
  • [42] Cylindrical algebraic decomposition using local projections
    Strzebonski, Adam
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2016, 76 : 36 - 64
  • [43] Input design using cylindrical algebraic decomposition
    Hjalmarsson, Hakan
    Egebrand, Freja
    [J]. 2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 811 - 817
  • [44] Clustering in the Lazard method for Cylindrical Algebraic Decomposition
    del Rio, Tereso
    Sadeghimanesh, AmirHosein
    England, Matthew
    [J]. ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2023, 57 (03): : 126 - 129
  • [45] PARTIAL CYLINDRICAL ALGEBRAIC DECOMPOSITION FOR QUANTIFIER ELIMINATION
    COLLINS, GE
    HONG, H
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1991, 12 (03) : 299 - 328
  • [46] Truth table invariant cylindrical algebraic decomposition
    Bradford, Russell
    Davenport, James H.
    England, Matthew
    McCallum, Scott
    Wilson, David
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2016, 76 : 1 - 35
  • [47] Cylindrical Algebraic Decomposition using validated numerics
    Strzebonski, Adam W.
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2006, 41 (09) : 1021 - 1038
  • [48] Constructing a single cell in cylindrical algebraic decomposition
    Brown, Christopher W.
    Kosta, Marek
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2015, 70 : 14 - 48
  • [49] The Complexity of Quantifier Elimination and Cylindrical Algebraic Decomposition
    Brown, Christopher W.
    Davenport, James H.
    [J]. ISSAC 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2007, : 54 - 60
  • [50] Solving Differential Equations by Artificial Neural Networks and Domain Decomposition
    Alaeddin Malek
    Ali Emami Kerdabadi
    [J]. Iranian Journal of Science, 2023, 47 : 1233 - 1244