Variable Ordering Selection for Cylindrical Algebraic Decomposition with Artificial Neural Networks

被引:5
|
作者
Chen, Changbo [1 ,2 ]
Zhu, Zhangpeng [1 ]
Chi, Haoyu [1 ,2 ]
机构
[1] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing Key Lab Automated Reasoning & Cognit, Chongqing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
来源
关键词
Cylindrical algebraic decomposition; Variable ordering; Machine learning; Neural network;
D O I
10.1007/978-3-030-52200-1_28
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Cylindrical algebraic decomposition (CAD) is a fundamental tool in computational real algebraic geometry. Previous studies have shown that machine learning (ML) based approaches may outperform traditional heuristic ones on selecting the best variable ordering when the number of variables n <= 4. One main challenge for handling the general case is the exponential explosion of number of different orderings when n increases. In this paper, we propose an iterative method for generating candidate variable orderings and an ML approach for selecting the best ordering from them via learning neural network classifiers. Experimentations show that this approach outperforms heuristic ones for n = 4, 5, 6.
引用
收藏
页码:281 / 291
页数:11
相关论文
共 50 条
  • [21] Evaluation of artificial neural networks for project selection
    Flintsch, GW
    Zaniewski, JP
    Medina, A
    [J]. ARTIFICIAL INTELLIGENCE AND MATHEMATICAL METHODS IN PAVEMENT AND GEOMECHANICAL SYSTEMS, 1998, : 13 - 22
  • [22] Feature Selection Using Artificial Neural Networks
    Ledesma, Sergio
    Cerda, Gustavo
    Avina, Gabriel
    Hernandez, Donato
    Torres, Miguel
    [J]. MICAI 2008: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, 5317 : 351 - 359
  • [23] Choosing better variable orderings for cylindrical algebraic decomposition via exploiting chordal structure
    Li, Haokun
    Xia, Bican
    Zhang, Huiying
    Zheng, Tao
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2023, 116 : 324 - 344
  • [24] Cylindrical algebraic decomposition with equational constraints
    England, Matthew
    Bradford, Russell
    Davenport, James H.
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2020, 100 : 38 - 71
  • [25] CYLINDRICAL ALGEBRAIC DECOMPOSITION BY QUANTIFIER ELIMINATION
    ARNON, DS
    MCCALLUM, S
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1982, 144 : 215 - 222
  • [26] Improved projection for cylindrical algebraic decomposition
    Brown, CW
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2001, 32 (05) : 447 - 465
  • [27] Interval arithmetic in cylindrical algebraic decomposition
    Collins, GE
    Johnson, JR
    Krandick, W
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2002, 34 (02) : 145 - 157
  • [28] Accelerating Algebraic Multigrid Methods via Artificial Neural Networks
    Antonietti, Paola F.
    Caldana, Matteo
    Dede', Luca
    [J]. VIETNAM JOURNAL OF MATHEMATICS, 2023, 51 (1) : 1 - 36
  • [29] Accelerating Algebraic Multigrid Methods via Artificial Neural Networks
    Paola F. Antonietti
    Matteo Caldana
    Luca Dede’
    [J]. Vietnam Journal of Mathematics, 2023, 51 : 1 - 36
  • [30] Fully incremental cylindrical algebraic decomposition
    Kremer, Gereon
    Abraham, Erika
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2020, 100 : 11 - 37