2D-STR: Reducing Spatio-temporal Traffic Datasets by Partitioning and Modelling

被引:1
|
作者
Steadman, Liam [1 ]
Griffiths, Nathan [1 ]
Jarvis, Stephen [1 ]
McRobbie, Stuart [2 ]
Wallbank, Caroline [2 ]
机构
[1] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[2] TRL, Wokingham RG40 3GA, England
基金
英国工程与自然科学研究理事会;
关键词
Spatio-temporal Data; Data Reduction; Data Partitioning;
D O I
10.5220/0007679100410052
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Spatio-temporal data generated by sensors in the environment, such as traffic data, is widely used in the transportation domain. However, learning from and analysing such data is increasingly problematic as the volume of data grows. Therefore, methods are required to reduce the quantity of data needed for multiple types of subsequent analysis without losing significant information. In this paper, we present the 2-Dimensional Spatio-Temporal Reduction method (2D-STR), which partitions the spatio-temporal matrix of a dataset into regions of similar instances, and reduces each region to a model of its instances. The method is shown to be effective at reducing the volume of a traffic dataset to <5% of its original volume whilst achieving a normalise root mean squared error of <5% when reproducing the original features of the dataset.
引用
收藏
页码:41 / 52
页数:12
相关论文
共 50 条
  • [31] Defining Traffic States using Spatio-temporal Traffic Graphs
    Roy, Debaditya
    Kumar, K. Naveen
    Mohan, C. Krishna
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [32] Spatio-temporal propagation of traffic jams in urban traffic networks
    Yinan, Jiang
    Rui, Kang
    Daqing, Li
    Shengmin, Guo
    Havlin, Shlomo
    arXiv, 2017,
  • [33] Variance partitioning in spatio-temporal disease mapping models
    Franco-Villoria, Maria
    Ventrucci, Massimo
    Rue, Havard
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2022, 31 (08) : 1566 - 1578
  • [34] Clearing Secondary Spectrum Market with Spatio-temporal Partitioning
    Saha, Sudip
    Marathe, Achla
    Pei, Guanhong
    Subbiah, Balaaji S. P.
    Kim, Junwhan
    Vullikanti, Anil Kumar S.
    2012 IEEE INTERNATIONAL SYMPOSIUM ON DYNAMIC SPECTRUM ACCESS NETWORKS, 2012, : 358 - 367
  • [35] Spatio-temporal variability of bedload transport rate: analysis and 2D modelling approach
    Habersack, Helmut
    Seitz, Hugo
    Laronne, Jonathan B.
    GEODINAMICA ACTA, 2008, 21 (1-2) : 67 - 79
  • [36] On Spatio-Temporal Modelling of Stream Network Initiation
    Papageorgaki I.
    Nalbantis I.
    Environmental Processes, 2018, 5 (Suppl 1) : 239 - 257
  • [37] Modelling spatio-temporal interactions within the cell
    Padmini Rangamani
    Ravi Iyengar
    Journal of Biosciences, 2007, 32 : 157 - 167
  • [38] Spatio-temporal stochastic modelling of environmental hazards
    Mateu, Jorge
    Ignaccolo, Rosalba
    SPATIAL STATISTICS, 2015, 14 : 115 - 118
  • [39] Spatio-temporal modelling of the status of groundwater droughts
    Marchant, B. P.
    Bloomfield, J. P.
    JOURNAL OF HYDROLOGY, 2018, 564 : 397 - 413
  • [40] Modelling and analysis techniques for spatio-temporal requirements
    Touzani M.
    Ponsard C.
    2017, Lavoisier (22): : 43 - 75