2D-STR: Reducing Spatio-temporal Traffic Datasets by Partitioning and Modelling

被引:1
|
作者
Steadman, Liam [1 ]
Griffiths, Nathan [1 ]
Jarvis, Stephen [1 ]
McRobbie, Stuart [2 ]
Wallbank, Caroline [2 ]
机构
[1] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[2] TRL, Wokingham RG40 3GA, England
基金
英国工程与自然科学研究理事会;
关键词
Spatio-temporal Data; Data Reduction; Data Partitioning;
D O I
10.5220/0007679100410052
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Spatio-temporal data generated by sensors in the environment, such as traffic data, is widely used in the transportation domain. However, learning from and analysing such data is increasingly problematic as the volume of data grows. Therefore, methods are required to reduce the quantity of data needed for multiple types of subsequent analysis without losing significant information. In this paper, we present the 2-Dimensional Spatio-Temporal Reduction method (2D-STR), which partitions the spatio-temporal matrix of a dataset into regions of similar instances, and reduces each region to a model of its instances. The method is shown to be effective at reducing the volume of a traffic dataset to <5% of its original volume whilst achieving a normalise root mean squared error of <5% when reproducing the original features of the dataset.
引用
收藏
页码:41 / 52
页数:12
相关论文
共 50 条
  • [21] The SPDE approach for spatio-temporal datasets with advection and diffusion
    Clarotto, Lucia
    Allard, Denis
    Romary, Thomas
    Desassis, Nicolas
    SPATIAL STATISTICS, 2024, 62
  • [22] Lagrangian Approaches to Storage of Spatio-Temporal Network Datasets
    Yang, KwangSoo
    Evans, Michael R.
    Gunturi, Venkata M. V.
    Kang, James M.
    Shekhar, Shashi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (09) : 2222 - 2236
  • [23] Modeling dynamic spatio-temporal correlations and transitions with time window partitioning for traffic flow prediction
    Yu, Dongjin
    Guo, Gangming
    Wang, Dongjing
    Zhang, Haiping
    Li, Bao
    Xu, Guandong
    Deng, Shuiguang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 252
  • [24] Spatio-Temporal AutoEncoder for Traffic Flow Prediction
    Liu, Mingzhe
    Zhu, Tongyu
    Ye, Junchen
    Meng, Qingxin
    Sun, Leilei
    Du, Bowen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (05) : 5516 - 5526
  • [25] Spatio-Temporal Pyramid Networks for Traffic Forecasting
    Hu, Jia
    Wang, Chu
    Lin, Xianghong
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 339 - 354
  • [26] Sequential Patterns for Spatio-Temporal Traffic Prediction
    Almuhisen, Feda
    Durand, Nicolas
    Brenner, Leonardo
    Quafafou, Mohamed
    2021 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT 2021), 2021, : 595 - 602
  • [27] MLP for Spatio-Temporal Traffic Volume Forecasting
    Dimara, Asimina
    Triantafyllidis, Dimitrios
    Krinidis, Stelios
    Kitsikoudis, Konstantinos
    Ioannidis, Dimosthenis
    Valkouma, Efthalia
    Skarvelakis, Stilianos
    Antipas, Stavros
    Tzovaras, Dimitrios
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 764 - 770
  • [28] Spatio-temporal Traffic with Mobility in Poisson Networks
    Wang, Gang
    Zhong, Yi
    Wu, Meifang
    Han, Tao
    2018 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2018,
  • [29] Spatio-temporal graph mixformer for traffic forecasting
    Lablack, Mourad
    Shen, Yanming
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 228
  • [30] Spatio-temporal Anomaly Detection in Traffic Data
    Wang, Qing
    Lv, Weifeng
    Du, Bowen
    ISCSIC'18: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND INTELLIGENT CONTROL, 2018,