Trees with the maximal value of Graovac-Pisanski index

被引:11
|
作者
Knor, Martin [1 ]
Skrekovski, Riste [2 ,4 ,5 ]
Tepeh, Aleksandra [2 ,3 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math, Radlinskeho 11, Bratislava 81368, Slovakia
[2] Fac Informat Studies, Ljubljana 8000, Novo Mesto, Slovenia
[3] Univ Maribor, Fac Elect Engn & Comp Sci, KoroSka Cesta 46, SLO-2000 Maribor, Slovenia
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[5] Univ Primorska, FAMNIT, Koper 6000, Slovenia
关键词
Topological indices; Graovac-Pisanski index; Trees; MODIFIED WIENER INDEX; SYMMETRY;
D O I
10.1016/j.amc.2019.04.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph. The Graovac-Pisanski index is defined as GP(G) = vertical bar V(G)/2 vertical bar Aut(G)vertical bar Sigma(u is an element of V(G) ) Sigma(alpha is an element of Aut(G)) d(G) (u, alpha(u)), where Aut(G) is the group of automorphisms of G. This index is considered to be an extension of the original Wiener index, since it takes into account not only the distances, but also the symmetries of the graph. In this paper, for each n we find all trees on n vertices with the maximal value of Graovac-Pisanski index. With the exception of several small values of n, there are exactly two extremal trees, one of them being the path. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:287 / 292
页数:6
相关论文
共 50 条
  • [41] Maximal value of the zeroth-order Randic index
    Pavlovic, L
    DISCRETE APPLIED MATHEMATICS, 2003, 127 (03) : 615 - 626
  • [42] On the Graovac-Ghorbani Index for Bicyclic Graphs with No Pendent Vertices
    Pacheco, Diego
    de Lima, Leonardo
    Oliveira, Carla Silva
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2021, 86 (02) : 429 - 448
  • [43] On two conjectures concerning trees with maximal inverse sum indeg index
    Lin, Wenshui
    Fu, Peifang
    Zhang, Guodong
    Hu, Peng
    Wang, Yikai
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [44] On two conjectures concerning trees with maximal inverse sum indeg index
    Wenshui Lin
    Peifang Fu
    Guodong Zhang
    Peng Hu
    Yikai Wang
    Computational and Applied Mathematics, 2022, 41
  • [45] Maximal Augmented Zagreb Index of Trees With at Most Three Branching Vertices
    Cruz, Roberto
    Monsalve, Juan Daniel
    Rada, Juan
    IEEE ACCESS, 2019, 7 : 146652 - 146661
  • [46] Proving a Conjecture Concerning Trees with Maximal Reduced Reciprocal Randic Index
    Ren, Xiangyu
    Hu, Xiaomin
    Zhao, Biao
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2016, 76 (01) : 171 - 184
  • [47] Maximal trees
    Brendle, Jorg
    ARCHIVE FOR MATHEMATICAL LOGIC, 2018, 57 (3-4) : 421 - 428
  • [48] On the maximal energy and the Hosoya index of a type of trees with many pendant vertices
    Yan, WG
    Ye, LZ
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2005, 53 (02) : 449 - 459
  • [49] Maximal first Zagreb index of trees with given Roman domination number
    Du, Zhibin
    Jamri, Ayu Ameliatul Shahilah Ahmad
    Hasni, Roslan
    Mojdeh, Doost Ali
    AIMS MATHEMATICS, 2022, 7 (07): : 11801 - 11812
  • [50] Maximal trees
    Jörg Brendle
    Archive for Mathematical Logic, 2018, 57 : 421 - 428