Trees with the maximal value of Graovac-Pisanski index

被引:11
|
作者
Knor, Martin [1 ]
Skrekovski, Riste [2 ,4 ,5 ]
Tepeh, Aleksandra [2 ,3 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math, Radlinskeho 11, Bratislava 81368, Slovakia
[2] Fac Informat Studies, Ljubljana 8000, Novo Mesto, Slovenia
[3] Univ Maribor, Fac Elect Engn & Comp Sci, KoroSka Cesta 46, SLO-2000 Maribor, Slovenia
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[5] Univ Primorska, FAMNIT, Koper 6000, Slovenia
关键词
Topological indices; Graovac-Pisanski index; Trees; MODIFIED WIENER INDEX; SYMMETRY;
D O I
10.1016/j.amc.2019.04.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph. The Graovac-Pisanski index is defined as GP(G) = vertical bar V(G)/2 vertical bar Aut(G)vertical bar Sigma(u is an element of V(G) ) Sigma(alpha is an element of Aut(G)) d(G) (u, alpha(u)), where Aut(G) is the group of automorphisms of G. This index is considered to be an extension of the original Wiener index, since it takes into account not only the distances, but also the symmetries of the graph. In this paper, for each n we find all trees on n vertices with the maximal value of Graovac-Pisanski index. With the exception of several small values of n, there are exactly two extremal trees, one of them being the path. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:287 / 292
页数:6
相关论文
共 50 条
  • [31] Complete Characterization of Chemical Trees with Maximal Augmented Zagreb Index
    Shao, Yanling
    Gao, Wei
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (05) : 3851 - 3870
  • [32] THE MAXIMAL α-INDEX OF TREES WITH K PENDENT VERTICES AND ITS COMPUTATION
    Rojo, Oscar
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36 : 38 - 46
  • [33] Complete Characterization of Chemical Trees with Maximal Augmented Zagreb Index
    Yanling Shao
    Wei Gao
    Journal of Applied Mathematics and Computing, 2023, 69 : 3851 - 3870
  • [34] ON MAXIMAL ENERGY AND HOSOYA INDEX OF TREES WITHOUT PERFECT MATCHING
    Hua, Hongbo
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 81 (01) : 47 - 57
  • [35] A Note on Chemical Trees with Maximal Inverse Sum Indeg Index
    Jiang, Yisheng
    Chen, Xiaodan
    Lin, Wenshui
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2021, 86 (01) : 29 - 38
  • [36] Maximal Lanzhou index of trees and unicyclic graphs with prescribed diameter
    Wei, Peichao
    Jia, Wuding
    Belardo, Francesco
    Liu, Muhuo
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 488
  • [37] Remarks on the Graovac-Ghorbani index of bipartite graphs
    Dimitrov, Darko
    Ikica, Barbara
    Skrekovski, Riste
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 370 - 376
  • [38] On Unicyclic Graphs with Minimum Graovac-Ghorbani Index
    Ergotic, Snjezana Majstorovic
    MATHEMATICS, 2024, 12 (03)
  • [39] VALUE OF AN INDEX OF MAXIMAL EXPIRATORY FORCE IN THE INTERPRETATION OF TESTS OF MAXIMAL VENTILATORY CAPACITY
    MCGREGOR, M
    AMERICAN REVIEW OF TUBERCULOSIS AND PULMONARY DISEASES, 1958, 78 (05): : 692 - 696
  • [40] Bipartite Graphs with the Maximal Value of the Second Zagreb Index
    Lang, Rongling
    Deng, Xiaole
    Lu, Hui
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (01) : 1 - 6