Trees with the maximal value of Graovac-Pisanski index

被引:11
|
作者
Knor, Martin [1 ]
Skrekovski, Riste [2 ,4 ,5 ]
Tepeh, Aleksandra [2 ,3 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math, Radlinskeho 11, Bratislava 81368, Slovakia
[2] Fac Informat Studies, Ljubljana 8000, Novo Mesto, Slovenia
[3] Univ Maribor, Fac Elect Engn & Comp Sci, KoroSka Cesta 46, SLO-2000 Maribor, Slovenia
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[5] Univ Primorska, FAMNIT, Koper 6000, Slovenia
关键词
Topological indices; Graovac-Pisanski index; Trees; MODIFIED WIENER INDEX; SYMMETRY;
D O I
10.1016/j.amc.2019.04.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph. The Graovac-Pisanski index is defined as GP(G) = vertical bar V(G)/2 vertical bar Aut(G)vertical bar Sigma(u is an element of V(G) ) Sigma(alpha is an element of Aut(G)) d(G) (u, alpha(u)), where Aut(G) is the group of automorphisms of G. This index is considered to be an extension of the original Wiener index, since it takes into account not only the distances, but also the symmetries of the graph. In this paper, for each n we find all trees on n vertices with the maximal value of Graovac-Pisanski index. With the exception of several small values of n, there are exactly two extremal trees, one of them being the path. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:287 / 292
页数:6
相关论文
共 50 条
  • [1] Unicyclic graphs with the maximal value of Graovac-Pisanski index
    Knor, Martin
    Komornik, Jozef
    Skrekovski, Riste
    Tepeh, Aleksandra
    ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (02) : 455 - 466
  • [2] ON THE GRAOVAC-PISANSKI INDEX OF A GRAPH
    Knor, M.
    Skrekovski, R.
    Tepeh, A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 867 - 870
  • [3] The Graovac-Pisanski index of Sierpinski graphs
    Fathalikhani, Khadijeh
    Babai, Azam
    Zemljic, Sara Sabrina
    DISCRETE APPLIED MATHEMATICS, 2020, 285 : 30 - 42
  • [4] On the Inverse Problem for the Graovac-Pisanski Index
    Ghorbanii, Modjtaba
    Klavzar, Sandi
    Rahmani, Shaghayegh
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2020, 83 (01) : 121 - 127
  • [5] The Graovac-Pisanski index of armchair tubulenes
    Tratnik, Niko
    Pletersek, Petra Zigert
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 56 (04) : 1103 - 1116
  • [6] Predicting melting points of hydrocarbons by the Graovac-Pisanski index
    Crepnjak, Matevz
    Tratnik, Niko
    Pletersek, Petra Zigert
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2018, 26 (05) : 239 - 245
  • [7] On the maximum Graovac-Pisanski index of bicyclic graphs
    Lu, Jian
    Wang, Zhongxiang
    AIMS MATHEMATICS, 2023, 8 (10): : 24914 - 24928
  • [8] On the Difference Between Wiener index and Graovac-Pisanski Index
    Knor, Martin
    Skrekovski, Riste
    Tepeh, Aleksandra
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2020, 83 (01) : 109 - 120
  • [9] Graovac-Pisanski index of fullerenes and fullerene-like molecules
    Ashrafi, Ali Reza
    Koorepazan-Moftakhar, Fatemeh
    Diudea, Mircea V.
    Ori, Ottorino
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2016, 24 (12) : 779 - 785
  • [10] The Graovac-Pisanski index of connected bipartite graphs with applications to hydrocarbon molecules
    Crepnjak, Matevz
    Knor, Martin
    Tratnik, Niko
    Zigert Pletersek, Petra
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2021, 29 (11) : 884 - 889