Nonvolatile resistive switching characteristics of HfO2 with Cu doping

被引:0
|
作者
Guan, Weihua [1 ]
Long, Shibing [1 ]
Liu, Ming [1 ]
Wan, Wei [2 ]
机构
[1] Chinese Acad Sci, Inst Microelect, Lab Nanofabricat & Novel Devices Integrated Techn, Beijing 100029, Peoples R China
[2] Univ Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, resistive switching characteristics of hafnium oxide (HfO2) with Cu doping prepared by electron beam evaporation are investigated for nonvolatile memory applications. The top metal electrode/hafnium oxide doped with Cu/n(+) Si structure shows two distinct resistance states (high-resistance and low-resistance) in DC sweep mode. By applying a proper bias, resistance switching from one state to the other state can be achieved. Though the ratio of high/low resistance is less than an order, the switching behavior is very stable and uniform with nearly 100% device yield. No data loss is found upon continuous readout for more than 10(4) s. The role of the intentionally introduced Cu impurities in the resistive switching behavior is investigated. HfO2 films With Cu doping are promising to be used in the nonvolatile resistive switching memory devices.
引用
收藏
页码:63 / +
页数:2
相关论文
共 50 条
  • [41] Large resistive switching in Pt/BNT/HfO2/Pt capacitors
    Song, H. J.
    Wang, J. B.
    Zhong, X. L.
    Cheng, J. J.
    Zhong, G. K.
    [J]. RSC ADVANCES, 2014, 4 (92) : 50891 - 50896
  • [42] Resistive Switching Behavior in HfO2 with Nb as an Oxygen Exchange Layer
    Nandi, Sanjoy Kumar
    Liu, Xinjun
    Li, Shuai
    Venkatachalam, Dinesh Kumar
    Belay, Kidane
    Elliman, Robert Glen
    [J]. 2014 CONFERENCE ON OPTOELECTRONIC AND MICROELECTRONIC MATERIALS AND DEVICES (COMMAD 2014), 2014, : 290 - 293
  • [43] Nonvolatile reconfigurable sequential logic in a HfO2 resistive random access memory array
    Zhou, Ya-Xiong
    Li, Yi
    Su, Yu-Ting
    Wang, Zhuo-Rui
    Shih, Ling-Yi
    Chang, Ting-Chang
    Chang, Kuan-Chang
    Long, Shi-Bing
    Sze, Simon M.
    Miao, Xiang-Shui
    [J]. NANOSCALE, 2017, 9 (20) : 6649 - 6657
  • [44] Data retention statistics and modelling in HfO2 resistive switching memories
    Ambrogio, Stefano
    Balatti, Simone
    Wang, Zhong Qiang
    Chen, Yu-Sheng
    Lee, Heng-Yuan
    Chen, Frederick T.
    Ielmini, Daniele
    [J]. 2015 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2015,
  • [45] ANODIC FORMATION OF HfO2 NANOSTRUCTURE ARRAYS FOR RESISTIVE SWITCHING APPLICATION
    Kamnev, Kirill
    Pytlicek, Zdenek
    Prasek, Jan
    Mozalev, Alexander
    [J]. 12TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2020), 2021, : 122 - 126
  • [46] Resistive switching effects of HfO2 high-k dielectric
    Chan, M. Y.
    Zhang, T.
    Ho, V.
    Lee, P. S.
    [J]. MICROELECTRONIC ENGINEERING, 2008, 85 (12) : 2420 - 2424
  • [47] Improved resistive switching characteristics of a Pt/HfO2/Pt resistor by controlling anode interface with forming and switching polarity
    Jung, Yong Chan
    Seong, Sejong
    Lee, Taehoon
    Kim, Seon Yong
    Park, In-Sung
    Ahn, Jinho
    [J]. APPLIED SURFACE SCIENCE, 2018, 435 : 117 - 121
  • [48] Improved resistive switching and synaptic characteristics using Ar plasma irradiation on the Ti/HfO2 interface
    Ku, Boncheol
    Abbas, Yawar
    Kim, Sohyeon
    Sokolov, Andrey Sergeevich
    Jeon, Yu-Rim
    Choi, Changhwan
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 797 : 277 - 283
  • [49] The dependence of bottom electrode materials on resistive switching characteristics for HfO2/TiOx bilayer structure RRAM
    Liu, Jian
    Chen, Kun-Ji
    Ma, Zhong-Yuan
    Yang, Hua-Feng
    Zhang, Xin-Xin
    Sun, Yang
    Huang, Xin-Fan
    [J]. 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), 2018, : 34 - 36
  • [50] Resistive switching in TiN/HfxAl1 − xOy/HfO2/TiN and TiN/HfO2/Ti/TiN structures
    Orlov O.M.
    Gornev E.S.
    Shadrin A.V.
    Zaitsev S.A.
    Morozov S.A.
    Zablotskii A.V.
    [J]. Russian Microelectronics, 2014, 43 (5) : 328 - 332