Radiation Defects in Aluminum Nitride-Based Ceramics

被引:1
|
作者
Kozlovskii, A. L. [1 ,2 ]
Dukenbaev, K. [3 ]
Zdorovets, M. V. [1 ,2 ,4 ]
机构
[1] Minist Energy Republ Kazakhstan, Inst Nucl Phys, Alma Ata, Kazakhstan
[2] Gumilyov Eurasian Natl Univ, Astana, Kazakhstan
[3] Nazarbayev Univ, Sch Engn, Astana, Kazakhstan
[4] Ural Fed Univ, Ekaterinburg, Russia
关键词
ceramics; hillocks; ionizing radiation; structural properties; GRAIN-GROWTH; NANOCRYSTALLINE; MICROSTRUCTURE;
D O I
10.1134/S0018143919010077
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The defect formation in AlN ceramics by bombarding with Fe+7 ions at a fluence ranging from 1 x 10(11) to 1 x 10(14) ion/cm(2) has been studied. Changes in the main crystallographic characteristics, a decrease in the Griffiths criterion, and an increased in average stress as a result of irradiation are due to the appearance of additional defects in the structure and their subsequent evolution leading to changes in the degree of crystallinity. Pyramidal hillocks with an average height of 17-20 nm are observed to form on the surface of samples irradiated with Fe+7 ions at a fluence of 1 x 10(11) ion/cm(2).
引用
收藏
页码:71 / 75
页数:5
相关论文
共 50 条
  • [41] Oxygen-related defects and energy accumulation in aluminum nitride ceramics
    Berzina, B
    Trinkler, L
    Sils, J
    Palcevskis, E
    [J]. RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2001, 156 (1-4): : 241 - 247
  • [42] Ionizing radiation defects and reliability of Gallium Nitride-based III-V semiconductor devices: A comprehensive review
    Sandeep, V.
    Pravin, J. Charles
    Kumar, S. Ashok
    [J]. MICROELECTRONICS RELIABILITY, 2024, 159
  • [43] An Aluminum Nitride-based chemical sensor using Q-DLTS
    Rothenberger, J. B.
    Montenegro, D. E.
    Prelas, M. A.
    Ghosh, T. K.
    Tompson, R. V.
    Loyalka, S. K.
    [J]. DIAMOND AND RELATED MATERIALS, 2012, 23 : 72 - 75
  • [44] Simulation of Gallium Nitride/Aluminum Nitride-Based Triple Barrier Quantum Region for ULTRARAM Application
    Mehmood, Safdar
    Bi, Jinshun
    Liu, Mengxin
    Zhang, Yu
    [J]. JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2023, 18 (08) : 897 - 904
  • [45] OBSERVATION OF FRACTURE SOURCE IN HIGH-STRENGTH SILICON NITRIDE-BASED CERAMICS
    YANABA, Y
    CHO, WS
    HAYASHI, K
    [J]. JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1993, 57 (11) : 1352 - 1359
  • [46] Porous silicon nitride-based ceramics fabricated from silicon and carbon powders
    Kondo, N
    Suzuki, Y
    Yang, JF
    Zhang, GJ
    Ohji, T
    [J]. JOURNAL OF MATERIALS SCIENCE LETTERS, 2001, 20 (05) : 461 - 463
  • [47] Oxidation and corrosion mechanisms for silicon nitride-based ceramics in air and fused salts
    Byrne, P
    Ramesh, R
    Pomeroy, MJ
    [J]. HIGH TEMPERATURE CORROSION AND PROTECTION OF MATERIALS 4, PTS 1 AND 2, 1997, 251-2 : 845 - 852
  • [48] MECHANICAL PROPERTIES OF MACROPOROUS SILICON NITRIDE-BASED CERAMICS DESIGNED FOR BONE SUBSTITUTES
    Bodisova, Katarina
    Kasiarova, Monika
    Vilcekova, Zuzana
    Domanicka, Magdalena
    Lences, Zoltan
    Hnatko, Miroslav
    Gromosova, Silvia
    Sajgalik, Pavol
    [J]. CERAMICS-SILIKATY, 2014, 58 (02) : 99 - 105
  • [49] Frequency agile antennas based on aluminum nitride ceramics
    Kang, Hyun Il
    Kim, Jong Tae
    Song, Joon Tae
    [J]. CURRENT APPLIED PHYSICS, 2010, 10 (02) : 642 - 645
  • [50] Atomic structures of oxygen-associated defects in sintered aluminum nitride ceramics
    Yan, YF
    Pennycook, SJ
    Terauchi, M
    Tanaka, M
    [J]. MICROSCOPY AND MICROANALYSIS, 1999, 5 (05) : 352 - 357