Simulation of Gallium Nitride/Aluminum Nitride-Based Triple Barrier Quantum Region for ULTRARAM Application

被引:0
|
作者
Mehmood, Safdar [1 ,2 ]
Bi, Jinshun [1 ,2 ,3 ]
Liu, Mengxin [1 ,2 ,4 ]
Zhang, Yu [5 ,6 ,7 ]
机构
[1] Chinese Acad Sci, Inst Microelect, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Inst Microelect Tianjin Binhai New Area, Tianjin 300308, Peoples R China
[4] Beijing Zhongke New Micro Technol Dev Co Ltd, Beijing 100029, Peoples R China
[5] Chinese Acad Sci, Inst Semicond, Beijing 100085, Peoples R China
[6] Shanxi Key Lab Adv Semicond Optoelect Devices & In, Jincheng 048026, Peoples R China
[7] Jincheng Res Inst Optomachatron Ind, Jincheng 048026, Peoples R China
基金
中国国家自然科学基金;
关键词
ULTRARAM; Resonant Tunneling; Nonvolatile Memory; Quantum Well; Potential Barrier; Numerical Analysis; MEMORY; NONVOLATILE; FLASH;
D O I
10.1166/jno.2023.3468
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
ULTRARAM is a low-power, high-speed, nonvolatile compound semiconductor memory device that uses triple barrier resonance tunneling (TBRT) to store electrical charge in a floating gate. Using a self-consistent solution of Schrodinger-Poisson equations, we investigated the electrical properties, transmission spectra, and electron dynamics across GaN/AlN TBRT region for the ULTRARAM application. The simulation results show that GaN/AlN exhibits tunable electrical properties by using a TBRT region of variable thickness. Successive optimization and testing of various thicknesses significantly altered the transmission across multiple barriers and localization of electrons in the quantum wells. The program/erase (P/E) operation of GaN/AlN-based ULTRARAM in a triple barrier structure is accomplished at less than 2 V. The device's excellent nonvolatility is due to the conduction band offset (CBO) of GaN/AlN heterostructure providing a large energy barrier (2.1 eV), which prevents electrons from escaping from the floating gate. Because of the low voltage operation and small capacitance, the switching energy consumption is much lower than that of a standard floating gate IP: 203 8 109 20 On: Mon 20 Nov 2023 08:14 24 Flash.
引用
收藏
页码:897 / 904
页数:8
相关论文
共 50 条
  • [1] Aluminum pushes gallium nitride-based emitters to the deep ultraviolet
    不详
    LASER FOCUS WORLD, 2002, 38 (03): : 9 - 9
  • [2] Quantum Efficiency of Gallium Nitride-Based Heterostructures with GaInN Quantum Wells
    Vigdorovich, E. N.
    SEMICONDUCTORS, 2018, 52 (15) : 1925 - 1930
  • [3] Advances in gallium nitride-based electronics
    Adesida, I.
    Kumar, V.
    EDSSC: 2007 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS, VOLS 1 AND 2, PROCEEDINGS, 2007, : 1 - 6
  • [4] On the effect of quantum barrier thickness in the active region of nitride-based light emitting diodes
    Wang, C. K.
    Chiou, Y. Z.
    Chang, S. J.
    Chang, C. Y.
    Chiang, T. H.
    Lin, T. K.
    Li, X. Q.
    SOLID-STATE ELECTRONICS, 2014, 99 : 11 - 15
  • [5] Two-dimension simulation of gallium nitride-based laser diode
    Jin, X.
    Zhang, B.
    Jobe, S.
    DeLeon, J.
    Flickinger, J.
    Dai, T.
    Zhang, G.
    Heller, E.
    Chen, L.
    NUSOD '07: PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES, 2007, : 37 - +
  • [6] Development of gallium nitride-based MEMS structures
    Stonas, AR
    Turner, KL
    DenBaars, SP
    Hu, EL
    BOSTON TRANSDUCERS'03: DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2003, : 1156 - 1159
  • [7] Gallium nitride-based potentiometric anion sensor
    Chaniotakis, NA
    Alifragis, Y
    Konstantinidis, G
    Georgakilas, A
    ANALYTICAL CHEMISTRY, 2004, 76 (18) : 5552 - 5556
  • [8] Gallium Indium Nitride-Based Green Lasers
    Sizov, Dmitry
    Bhat, Rajaram
    Zah, Chung-En
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2012, 30 (05) : 679 - 699
  • [9] Ohmic Contacts to Gallium Nitride-Based Structures
    Zhelannov, A. V.
    Ionov, A. S.
    Seleznev, B. I.
    Fedorov, D. G.
    SEMICONDUCTORS, 2020, 54 (03) : 317 - 321
  • [10] Ohmic Contacts to Gallium Nitride-Based Structures
    A. V. Zhelannov
    A. S. Ionov
    B. I. Seleznev
    D. G. Fedorov
    Semiconductors, 2020, 54 : 317 - 321