Simulation of Gallium Nitride/Aluminum Nitride-Based Triple Barrier Quantum Region for ULTRARAM Application

被引:0
|
作者
Mehmood, Safdar [1 ,2 ]
Bi, Jinshun [1 ,2 ,3 ]
Liu, Mengxin [1 ,2 ,4 ]
Zhang, Yu [5 ,6 ,7 ]
机构
[1] Chinese Acad Sci, Inst Microelect, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Inst Microelect Tianjin Binhai New Area, Tianjin 300308, Peoples R China
[4] Beijing Zhongke New Micro Technol Dev Co Ltd, Beijing 100029, Peoples R China
[5] Chinese Acad Sci, Inst Semicond, Beijing 100085, Peoples R China
[6] Shanxi Key Lab Adv Semicond Optoelect Devices & In, Jincheng 048026, Peoples R China
[7] Jincheng Res Inst Optomachatron Ind, Jincheng 048026, Peoples R China
基金
中国国家自然科学基金;
关键词
ULTRARAM; Resonant Tunneling; Nonvolatile Memory; Quantum Well; Potential Barrier; Numerical Analysis; MEMORY; NONVOLATILE; FLASH;
D O I
10.1166/jno.2023.3468
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
ULTRARAM is a low-power, high-speed, nonvolatile compound semiconductor memory device that uses triple barrier resonance tunneling (TBRT) to store electrical charge in a floating gate. Using a self-consistent solution of Schrodinger-Poisson equations, we investigated the electrical properties, transmission spectra, and electron dynamics across GaN/AlN TBRT region for the ULTRARAM application. The simulation results show that GaN/AlN exhibits tunable electrical properties by using a TBRT region of variable thickness. Successive optimization and testing of various thicknesses significantly altered the transmission across multiple barriers and localization of electrons in the quantum wells. The program/erase (P/E) operation of GaN/AlN-based ULTRARAM in a triple barrier structure is accomplished at less than 2 V. The device's excellent nonvolatility is due to the conduction band offset (CBO) of GaN/AlN heterostructure providing a large energy barrier (2.1 eV), which prevents electrons from escaping from the floating gate. Because of the low voltage operation and small capacitance, the switching energy consumption is much lower than that of a standard floating gate IP: 203 8 109 20 On: Mon 20 Nov 2023 08:14 24 Flash.
引用
收藏
页码:897 / 904
页数:8
相关论文
共 50 条
  • [21] Gallium nitride-based resonant tunneling diode oscillators
    Murayama, Masahiro
    Motobayashi, Hisayoshi
    Hoshina, Yukio
    Shoji, Miwako
    Takiguchi, Yoshiro
    Miyahara, Hiroyuki
    Koyama, Takahiro
    Futagawa, Noriyuki
    APPLIED PHYSICS LETTERS, 2024, 125 (11)
  • [22] The Studies on Gallium Nitride-Based Materials: A Bibliometric Analysis
    Lam, Weng Hoe
    Lam, Weng Siew
    Lee, Pei Fun
    MATERIALS, 2023, 16 (01)
  • [23] Gallium Nitride-Based Gas, Chemical and Biomedical Sensors
    Pearton, S. J.
    Ren, Fan
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2012, 15 (01) : 16 - 21
  • [24] Gallium nitride-based microwave and RF control devices
    Caverly, RH
    Drozdovski, NV
    Quinn, MJ
    MICROWAVE JOURNAL, 2001, 44 (02) : 112 - +
  • [25] Gallium nitride-based photodetector reaches a gain of 1000
    不详
    LASER FOCUS WORLD, 2003, 39 (02): : 15 - 15
  • [26] Gallium nitride-based LEDs on silicon show benefits
    不详
    LASER FOCUS WORLD, 2002, 38 (08): : 13 - 13
  • [27] Gallium nitride-based nanowire radial heterostructures for nanophotonics
    Qian, F
    Li, Y
    Gradecak, S
    Wang, DL
    Barrelet, CJ
    Lieber, CM
    NANO LETTERS, 2004, 4 (10) : 1975 - 1979
  • [28] Gallium nitride-based complementary logic integrated circuits
    Zheng, Zheyang
    Zhang, Li
    Song, Wenjie
    Feng, Sirui
    Xu, Han
    Sun, Jiahui
    Yang, Song
    Chen, Tao
    Wei, Jin
    Chen, Kevin J.
    NATURE ELECTRONICS, 2021, 4 (08) : 595 - +
  • [29] Nitride-based quantum dot visible lasers
    Banerjee, A.
    Frost, T.
    Bhattacharya, P.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (26)
  • [30] Neutron irradiation effects on gallium nitride-based blue LEDs
    Qiu, Jie
    Hu, Xunxiang
    Li, Congyi
    Chen, Liang
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2022, 518 : 37 - 40