HYPERSPECTRAL ANOMALY DETECTION USING BACKGROUND LEARNING AND STRUCTURED SPARSE REPRESENTATION

被引:4
|
作者
Li, Fei [1 ]
Zhang, Yanning [1 ]
Zhang, Lei [1 ]
Zhang, Xiuwei [1 ]
Jiang, Dongmei [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomaly detection; dictionary learning; structured sparse representation; reweighted Laplace prior;
D O I
10.1109/IGARSS.2016.7729413
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel background dictionary learning and structured sparse representation based anomaly detection method is proposed for hyperspectral imagery. First, a robust PCA spectrum dictionary is learned from the plausible background area detected by the local RX detector. With the learned dictionary, the reweighted Laplace prior based structured sparse representation model is then employed to reconstruct the spectrum of each pixel in the image. Due to considering the structured sparsity in representation, the background spectra can be reconstructed more accurately than anomaly ones. Thus, reconstruction error is utilized to separate the anomaly pixels and background ones. Experimental results on both simulated and real-world datasets demonstrate that the proposed method outperforms several state-of-the-art hyperspectral anomaly detection methods.
引用
收藏
页码:1618 / 1621
页数:4
相关论文
共 50 条
  • [1] Archetypal Analysis and Structured Sparse Representation for Hyperspectral Anomaly Detection
    Zhao, Genping
    Li, Fei
    Zhang, Xiuwei
    Laakso, Kati
    Chan, Jonathan Cheung-Wai
    [J]. REMOTE SENSING, 2021, 13 (20)
  • [2] Hyperspectral Anomaly Detection by the Use of Background Joint Sparse Representation
    Li, Jiayi
    Zhang, Hongyan
    Zhang, Liangpei
    Ma, Li
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2523 - 2533
  • [3] JOINT SPARSE REPRESENTATION AND MULTITASK LEARNING FOR HYPERSPECTRAL ANOMALY DETECTION
    Zhang, Yuxiang
    He, Kai
    Dong, Yanni
    Wu, Ke
    Chen, Tao
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2424 - 2427
  • [4] Background Representation Learning With Structural Constraint for Hyperspectral Anomaly Detection
    Ma, Xiaoxiao
    Zhang, Xiangrong
    Huyan, Ning
    Gu, Jing
    Tang, Xu
    Jiao, Licheng
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [5] Hyperspectral Anomaly Detection via Background Estimation and Adaptive Weighted Sparse Representation
    Zhu, Lingxiao
    Wen, Gongjian
    [J]. REMOTE SENSING, 2018, 10 (02):
  • [6] Structured Background Modeling for Hyperspectral Anomaly Detection
    Li, Fei
    Zhang, Lei
    Zhang, Xiuwei
    Chen, Yanjia
    Jiang, Dongmei
    Zhao, Genping
    Zhang, Yanning
    [J]. SENSORS, 2018, 18 (09)
  • [7] Hyperspectral anomaly detection based on spectral-spatial background joint sparse representation
    Zhang, Lili
    Zhao, Chunhui
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2017, 50 (01) : 362 - 376
  • [8] BACKGROUND JOINT SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE SUB-PIXEL ANOMALY DETECTION
    Li, Jiayi
    Zhang, Hongyan
    Zhang, Liangpei
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1528 - 1531
  • [9] Hyperspectral Anomaly Detection via Sparse Representation and Collaborative Representation
    Lin, Sheng
    Zhang, Min
    Cheng, Xi
    Zhou, Kexue
    Zhao, Shaobo
    Wang, Hai
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 946 - 961
  • [10] TENSOR LOW-RANK SPARSE REPRESENTATION LEARNING FOR HYPERSPECTRAL ANOMALY DETECTION
    Xiao, Qingjiang
    Zhao, Liaoying
    Chen, Shuhan
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7356 - 7359