Bourgin-Yang version of the Borsuk-Ulam theorem for Zpk-equivariant maps

被引:4
|
作者
Marzantowicz, Waclaw [1 ]
de Mattos, Denise
dos Santos, Edivaldo L.
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2012年 / 12卷 / 04期
基金
巴西圣保罗研究基金会;
关键词
D O I
10.2140/agt.2012.12.2245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = Z(pk) be a cyclic group of prime power order and let V and W be orthogonal representations of G with V-G = W-G = W-G = {0}. Let S(V) be the sphere of V and suppose f: S(V) -> W is a G-equivariant mapping. We give an estimate for the dimension of the set f(-1){0} in terms of V and W. This extends the Bourgin-Yang version of the Borsuk-Ulam theorem to this class of groups. Using this estimate, we also estimate the size of the G-coincidences set of a continuous map from S(V) into a real vector space W'.
引用
收藏
页码:2245 / 2258
页数:14
相关论文
共 50 条