Let G = Z(pk) be a cyclic group of prime power order and let V and W be orthogonal representations of G with V-G = W-G = W-G = {0}. Let S(V) be the sphere of V and suppose f: S(V) -> W is a G-equivariant mapping. We give an estimate for the dimension of the set f(-1){0} in terms of V and W. This extends the Bourgin-Yang version of the Borsuk-Ulam theorem to this class of groups. Using this estimate, we also estimate the size of the G-coincidences set of a continuous map from S(V) into a real vector space W'.
机构:
Sao Paulo Univ USP, Dept Matemat, Inst Ciencias Matemat & Comp, Campus Sao Carlos, BR-13560970 Sao Carlos, SP, BrazilSao Paulo State Univ Unesp, Inst Geosci & Exact Sci, Dept Matemat, BR-13506700 Rio Claro, SP, Brazil
Biasi, Carlos
Libardi, Alice Kimie Miwa
论文数: 0引用数: 0
h-index: 0
机构:
Sao Paulo State Univ Unesp, Inst Geosci & Exact Sci, Dept Matemat, BR-13506700 Rio Claro, SP, BrazilSao Paulo State Univ Unesp, Inst Geosci & Exact Sci, Dept Matemat, BR-13506700 Rio Claro, SP, Brazil
Libardi, Alice Kimie Miwa
de Mattos, Denise
论文数: 0引用数: 0
h-index: 0
机构:
Sao Paulo Univ USP, Dept Matemat, Inst Ciencias Matemat & Comp, Campus Sao Carlos, BR-13560970 Sao Carlos, SP, BrazilSao Paulo State Univ Unesp, Inst Geosci & Exact Sci, Dept Matemat, BR-13506700 Rio Claro, SP, Brazil
de Mattos, Denise
Ura, Sergio Tsuyoshi
论文数: 0引用数: 0
h-index: 0
机构:
Sao Paulo State Univ Unesp, Inst Geosci & Exact Sci, Dept Matemat, BR-13506700 Rio Claro, SP, BrazilSao Paulo State Univ Unesp, Inst Geosci & Exact Sci, Dept Matemat, BR-13506700 Rio Claro, SP, Brazil