A parametrized version of the Borsuk-Ulam-Bourgin-Yang-Volovikov theorem

被引:3
|
作者
Matschke, Benjamin [1 ]
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
关键词
Parametrized Borsuk-Ulam type theorems; Volovikov's theorem; multiple coincidences; waist of the sphere theorem; COMBINATORIAL GEOMETRY; MAPS; TRANSVERSALS; FAMILIES; BUNDLES; SPHERE; WAIST; SETS;
D O I
10.1142/S1793525314500101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a parametrized version of Volovikov's powerful Borsuk-Ulam-Bourgin-Yang type theorem, based on a new Fadell-Husseini type ideal-valued index of G-bundles which makes computations easy. As an application we provide a parametrized version of the following waist of the sphere theorem due to Gromov, Memarian, and Karasev-Volovikov: Any map f from an n-sphere to a k-manifold (n >= k) has a preimage f(-1)(z) whose epsilon-neighborhoods are at least as large as the epsilon-neighborhoods of the equator Sn-k (if n = k we further need that f has even degree).
引用
收藏
页码:263 / 280
页数:18
相关论文
共 50 条
  • [1] A parametrized version of the Borsuk-Ulam theorem
    Schick, Thomas
    Simon, Robert Samuel
    Spiez, Stanislaw
    Torunczyk, Henryk
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 : 1035 - 1047
  • [2] Bourgin-Yang version of the Borsuk-Ulam theorem for Zpk-equivariant maps
    Marzantowicz, Waclaw
    de Mattos, Denise
    dos Santos, Edivaldo L.
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2012, 12 (04): : 2245 - 2258
  • [3] Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups
    Wacław Marzantowicz
    Denise de Mattos
    Edivaldo L. dos Santos
    [J]. Journal of Fixed Point Theory and Applications, 2017, 19 : 1427 - 1437
  • [4] Bourgin-Yang versions of the Borsuk-Ulam theorem for p-toral groups
    Marzantowicz, Wacaw
    de Mattos, Denise
    dos Santos, Edivaldo L.
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (02) : 1427 - 1437
  • [5] Some remarks on the parametrized Borsuk–Ulam theorem
    Michael Crabb
    Mahender Singh
    [J]. Journal of Fixed Point Theory and Applications, 2018, 20
  • [6] Some remarks on the parametrized Borsuk-Ulam theorem
    Crabb, Michael
    Singh, Mahender
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (02)
  • [7] A CONTINUOUS VERSION OF THE BORSUK-ULAM THEOREM
    JAWOROWSKI, J
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 82 (01) : 112 - 114
  • [8] A HOMOLOGY VERSION OF THE BORSUK-ULAM THEOREM
    WALKER, JW
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (07): : 466 - 468
  • [9] ON PARAMETRIZED BORSUK-ULAM THEOREM FOR FREE ZP-ACTION
    IZYDOREK, M
    RYBICKI, S
    [J]. LECTURE NOTES IN MATHEMATICS, 1992, 1509 : 227 - 234
  • [10] PARAMETRIZED BORSUK-ULAM THEOREMS
    DOLD, A
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1988, 63 (02) : 275 - 285