Micro-jet printing of polymers and solder for electronics manufacturing

被引:54
|
作者
Hayes, DJ [1 ]
Cox, WR [1 ]
Grove, ME [1 ]
机构
[1] MicroFab Technol Inc, Plano, TX 75074 USA
来源
JOURNAL OF ELECTRONICS MANUFACTURING | 1998年 / 8卷 / 3-4期
关键词
D O I
10.1142/S0960313198000197
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ink-jet/micro-jet printing methods are being developed for direct writing of a variety of materials for electronics and optoelectronics manufacturing. The advantages offered by this approach for microelement fabrication and adhesive joining include precise volumetric control of dispensed material, data-driven flexibility, low cost, high speed, and low environmental impact. Custom thermo-setting and thermoplastic systems have been developed for the printing of optical interconnects, dielectric elements and coatings, adhesives and thick film resistors, utilizing a drop-on-demand piezoelectric print head operable at temperatures up to 300 degrees C. Reviewed here are examples of printing of (a) adhesives for component bonding; (b) dielectrics for overcoating and conformal microelectronics fabrication; (c) thick-film resistors; (d) micro-optical components; (e) polymers filled with oxides and fluorescing materials and (f) solder bumps, Manufacturing applications potentially addressable to advantage by this method include flip chip die attach, chip-scale microelectronics packaging, underfilling and overcoating, along with fabrication of passive devices, disk drive heads, and flat panel displays.
引用
收藏
页码:209 / 216
页数:8
相关论文
共 50 条
  • [41] MAIN MICRO-JET COOLING GASES FOR STEEL WELDING
    Wegrzyn, T.
    Piwnik, J.
    Lazarz, B.
    Hadrys, D.
    [J]. ARCHIVES OF METALLURGY AND MATERIALS, 2013, 58 (02) : 556 - 558
  • [42] Effects of pulse voltage on piezoelectric micro-jet for lubrication
    Li, Kai
    Liu, Jun-kao
    Chen, Wei-shan
    Zhang, Lu
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2017, 23 (08): : 3081 - 3089
  • [43] Mechanical properties of shaft surfacing with micro-jet cooling
    Wegrzyn, T.
    Piwnik, J.
    Lazarz, B.
    Tarasiuk, W.
    [J]. MECHANIKA, 2015, (05): : 419 - 423
  • [44] ACOUSTIC SIMULATION OF THE SLAPPING MODE OF PIEZOELECTRIC MICRO-JET
    Li, Kai
    Liu, Jun-kao
    Chen, Wei-shan
    Zhang, Lu
    Huang, Zi-li
    [J]. PROCEEDINGS OF THE 2015 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS, 2015, : 115 - 119
  • [45] Investigate Turbine Blades Cooling Ways for Micro-Jet Engines
    Hassan, Q.
    Jaszczur, M.
    [J]. INTERNATIONAL CONFERENCE ON THE SUSTAINABLE ENERGY AND ENVIRONMENTAL DEVELOPMENT, 2019, 214
  • [46] Experimental investigation on enhanced flow and heat transfer performance of micro-jet impingement vapor chamber for high power electronics
    Yi, Li
    Hu, Haozhong
    li, Chao
    Zhang, Ying
    Yang, Shu
    Pan, Minqiang
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2022, 173
  • [47] Enhanced dynamic exergy analysis of a micro-jet (μ-jet) engine at various modes
    Balli, Ozgur
    Aygun, Hakan
    Turan, Onder
    [J]. ENERGY, 2022, 239
  • [48] Towards printing as an electronics manufacturing method: micro-scale chiplet position control
    Matei, Ion
    Nelaturi, Saigopal
    Lu, Jeng Ping
    Bert, Julie A.
    Crawford, Lara S.
    Chow, Eugene
    [J]. 2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 1549 - 1555
  • [49] Machine learning-assisted E-jet printing for manufacturing of organic flexible electronics
    Shirsavar, Mehran Abbasi
    Taghavimehr, Mehrnoosh
    Ouedraogo, Lionel J.
    Javaheripi, Mojan
    Hashemi, Nicole N.
    Koushanfar, Farinaz
    Montazami, Reza
    [J]. BIOSENSORS & BIOELECTRONICS, 2022, 212
  • [50] Machine learning-assisted E-jet printing for manufacturing of organic flexible electronics
    Shirsavar, Mehran Abbasi
    Taghavimehr, Mehrnoosh
    Ouedraogo, Lionel J.
    Javaheripi, Mojan
    Hashemi, Nicole N.
    Koushanfar, Farinaz
    Montazami, Reza
    [J]. BIOSENSORS & BIOELECTRONICS, 2022, 212