Cure kinetic parameter estimation of thermosetting resins with isothermal data by using particle swarm optimization

被引:20
|
作者
Pagano, Rogerio L. [2 ]
Calado, Veronica M. A. [1 ]
Tavares, Frederico W. [1 ]
Biscaia, Evaristo C., Jr. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Escola Quim, BR-21941909 Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, COPPE, Programa Engn Quim, BR-21941914 Rio De Janeiro, Brazil
关键词
cure kinetics; parameter estimation; isothermal data; confidence region; differential-algebraic equation; PSO;
D O I
10.1016/j.eurpolymj.2008.05.017
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The heuristic algorithms have shown to be a powerful too[ in parameter estimation. Among these algorithms, particle swarm optimization (PSO) has become a method whose application has been increasing quickly. In the present work a new way for parameter estimation from cure kinetic model of polymeric resin using a differential-algebraic approach is shown. The PSO was applied to minimize the least squares function and to find the parameters from an autocatalytic model for describing cure kinetics of thermosetting resins. The isothermal data were obtained at four temperatures: 318. 333, 348 and 363 K. Three parameter estimation procedures were compared for finding a parameter set for all temperatures simultaneously. In the first one, called classical method, a curing rate was calculated with experimental values of the degree of cure and the temperature. In the second and third methods, the curing rate was obtained from the integration of a differential-algebraic system and the main difference between them is the objective function and the way to determine the ultimate reaction heat. All methods showed good results; however, the third method was more accurate than the others. The confidence regions of all parameters were found and they were used to give us indication whether the parameters estimated here by different methods are statistically different. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2678 / 2686
页数:9
相关论文
共 50 条
  • [31] Highly efficient photovoltaic parameter estimation using parallel particle swarm optimization on a GPU
    Gao, Shuhua
    Xiang, Cheng
    Lee, Tong Heng
    [J]. PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
  • [32] Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing
    Mughal, Muhammad Ali
    Ma, Qishuang
    Xiao, Chunyan
    [J]. ENERGIES, 2017, 10 (08)
  • [33] Quality-of-Experience Parameter Estimation for Multisensorial Media using Particle Swarm Optimization
    Jalal, Lana
    Popescu, Vlad
    Murroni, Maurizio
    [J]. 2017 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM) & 2017 INTL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS (ACEMP), 2017, : 965 - 970
  • [34] Multi-objective parameter estimation of induction motor using particle swarm optimization
    Sakthivel, V. P.
    Bhuvaneswari, R.
    Subramanian, S.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (03) : 302 - 312
  • [35] Accurate Parameter Estimation of Contaminant Transport Inverse Problem using Particle Swarm Optimization
    Bharat, Tadikonda Venkata
    Sivapullaiah, P. V.
    Allam, M. M.
    [J]. 2008 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2008, : 402 - 408
  • [36] Distributed and robust parameter estimation of IIR systems using incremental particle swarm optimization
    Majhi, Babita
    Panda, Ganapati
    [J]. DIGITAL SIGNAL PROCESSING, 2013, 23 (04) : 1303 - 1313
  • [37] PARAMETER ESTIMATION OF PERMANENT MAGNET SYNCHRONOUS MACHINES USING PARTICLE SWARM OPTIMIZATION ALGORITHM
    Abdelwanis, Mohamed I.
    El-sehiemy, Ragab
    Hamida, Mohmed A.
    [J]. REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2022, 67 (04): : 377 - 382
  • [38] Particle Swarm Optimization: Dynamic Parameter Adjustment Using Swarm Activity
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 2633 - 2638
  • [39] Estimation of kinetic parameters from adiabatic calorimetric data by a hybrid Particle Swarm Optimization method
    Guo, Zi-Chao
    Chen, Li-Ping
    Chen, Wang-Hua
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2017, 122 : 273 - 279
  • [40] Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method
    Sun, Jun
    Zhao, Ji
    Wu, Xiaojun
    Fang, Wei
    Cai, Yujie
    Xu, Wenbo
    [J]. PHYSICS LETTERS A, 2010, 374 (28) : 2816 - 2822