Continuous limit of the Nagel-Schreckenberg model

被引:70
|
作者
Krauss, S
Wagner, P
Gawron, C
机构
[1] Zentrum für Paralleles Rechnen, Universität zu Köln, Köln
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 04期
关键词
D O I
10.1103/PhysRevE.54.3707
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A generalized version of the Nagel-Schreckenberg model of traffic flow is presented that allows for continuous values of the velocities and spatial coordinates. It is shown that this generalization reveals structures of the dynamics that are masked by the discreteness of the original model and thus helps to clarify the physical interpretation of the dynamics considerably. It is shown numerically that the transition leading from the free how regime to the congested flow regime bears strong similarities with a first-order phase transition in equilibrium thermodynamics. A similar behavior is observed in more complicated microscopic models and in hydrodynamical descriptions of traffic flow, putting the model within a broader context of other models of traffic flow. An additional advantage of this continuous model is that it is much easier to calibrate with empirical data, only slightly decreasing numerical efficiency.
引用
收藏
页码:3707 / 3712
页数:6
相关论文
共 50 条
  • [31] Origins of Reverse Lane Usage Using Nagel-Schreckenberg Model
    Noda, Toshihiro
    Hieida, Yasuhiro
    Tadaki, Shin-ichi
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (02)
  • [32] The effects of reaction delay in the Nagel-Schreckenberg traffic flow model
    R. Jiang
    M. B. Hu
    B. Jia
    R. L. Wang
    Q. S. Wu
    [J]. The European Physical Journal B, 2006, 54 : 267 - 273
  • [33] The effects of reaction delay in the Nagel-Schreckenberg traffic flow model
    Jiang, R.
    Hu, M. B.
    Jia, B.
    Wang, R. L.
    Wu, Q. S.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2006, 54 (02): : 267 - 273
  • [34] Autocorrelations in the totally asymmetric simple exclusion process and Nagel-Schreckenberg model
    de Gier, Jan
    Garoni, Timothy M.
    Zhou, Zongzheng
    [J]. PHYSICAL REVIEW E, 2010, 82 (01):
  • [35] Density fluctuations and phase transition in the Nagel-Schreckenberg traffic flow model
    Lubeck, S
    Schreckenberg, M
    Usadel, KD
    [J]. PHYSICAL REVIEW E, 1998, 57 (01): : 1171 - 1174
  • [36] Extreme events in Nagel-Schreckenberg model of traffic flow on complex networks
    Gupta, Kritika
    Santhanam, M. S.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (16-17): : 3201 - 3209
  • [37] Phase transition at an on-ramp in the Nagel-Schreckenberg traffic flow model
    Jiang, Rui
    Wu, Qing-Song
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 366 (01) : 523 - 529
  • [38] Comment on "Analytical investigation of the open boundary conditions in the Nagel-Schreckenberg model"
    Neumann, Thorsten
    Wagner, Peter
    [J]. PHYSICAL REVIEW E, 2009, 80 (01):
  • [39] Analytical results of the Nagel-Schreckenberg model with stochastic open boundary conditions
    Jia, Ning
    Ma, Shoufeng
    [J]. PHYSICAL REVIEW E, 2009, 80 (04):
  • [40] Dynamical Universality Class of the Nagel-Schreckenberg and Related Models
    Schadschneider, Andreas
    Schmidt, Johannes
    de Gier, Jan
    Schuetz, Gunter M.
    [J]. TRAFFIC AND GRANULAR FLOW '17, 2019, : 53 - 60