Autocorrelations in the totally asymmetric simple exclusion process and Nagel-Schreckenberg model

被引:1
|
作者
de Gier, Jan
Garoni, Timothy M. [1 ]
Zhou, Zongzheng [2 ,3 ]
机构
[1] Univ Melbourne, Dept Math & Stat, ARC Ctr Excellence Math & Stat Complex Syst, Melbourne, Vic 3010, Australia
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 01期
基金
澳大利亚研究理事会;
关键词
CELLULAR-AUTOMATON; SIMULATION;
D O I
10.1103/PhysRevE.82.021107
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study via Monte Carlo simulation the dynamics of the Nagel-Schreckenberg model on a finite system of length L with open boundary conditions and parallel updates. We find numerically that in both the high and low density regimes the autocorrelation function of the system density behaves like 1-vertical bar t vertical bar/tau with a finite support [-tau,tau]. This is in contrast to the usual exponential decay typical of equilibrium systems. Furthermore, our results suggest that in fact tau=L/c, and in the special case of maximum velocity upsilon(max)=1 (corresponding to the totally asymmetric simple exclusion process) we can identify the exact dependence of c on the input, output and hopping rates. We also emphasize that the parameter tau corresponds to the integrated autocorrelation time, which plays a fundamental role in quantifying the statistical errors in Monte Carlo simulations of these models.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The Nagel-Schreckenberg model revisited
    Schadschneider, A
    EUROPEAN PHYSICAL JOURNAL B, 1999, 10 (03): : 573 - 582
  • [2] VELOCITY CORRELATIONS IN THE NAGEL-SCHRECKENBERG MODEL
    Lakouari, N.
    Jetto, K.
    Ez-Zahraouy, H.
    Benyoussef, A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2014, 25 (02):
  • [3] A varied form of the Nagel-Schreckenberg model
    Chen, HJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (26): : 3453 - 3464
  • [4] Velocity statistics of the Nagel-Schreckenberg model
    Bain, Nicolas
    Emig, Thorsten
    Ulm, Franz-Josef
    Schreckenberg, Michael
    PHYSICAL REVIEW E, 2016, 93 (02)
  • [5] Entry ramps in the Nagel-Schreckenberg model
    Pedersen, MM
    Ruhoff, PT
    PHYSICAL REVIEW E, 2002, 65 (05):
  • [6] Noise properties in the Nagel-Schreckenberg traffic model
    Chen, SP
    Huang, DW
    PHYSICAL REVIEW E, 2001, 63 (03):
  • [7] Continuous limit of the Nagel-Schreckenberg model
    Krauss, S
    Wagner, P
    Gawron, C
    PHYSICAL REVIEW E, 1996, 54 (04): : 3707 - 3712
  • [8] Correlation functions in the Nagel-Schreckenberg model
    Cheybani, S
    Kertész, J
    Schreckenberg, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (49): : 9787 - 9799
  • [9] Effects of ramps in the Nagel-Schreckenberg traffic model
    Huang, DW
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (06): : 739 - 749
  • [10] The effects of overtaking strategy in the Nagel-Schreckenberg model
    Zhu Su
    Weibing Deng
    Longfeng Zhao
    Jihui Han
    Wei Li
    Xu Cai
    The European Physical Journal B, 2016, 89