Autocorrelations in the totally asymmetric simple exclusion process and Nagel-Schreckenberg model

被引:1
|
作者
de Gier, Jan
Garoni, Timothy M. [1 ]
Zhou, Zongzheng [2 ,3 ]
机构
[1] Univ Melbourne, Dept Math & Stat, ARC Ctr Excellence Math & Stat Complex Syst, Melbourne, Vic 3010, Australia
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 01期
基金
澳大利亚研究理事会;
关键词
CELLULAR-AUTOMATON; SIMULATION;
D O I
10.1103/PhysRevE.82.021107
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study via Monte Carlo simulation the dynamics of the Nagel-Schreckenberg model on a finite system of length L with open boundary conditions and parallel updates. We find numerically that in both the high and low density regimes the autocorrelation function of the system density behaves like 1-vertical bar t vertical bar/tau with a finite support [-tau,tau]. This is in contrast to the usual exponential decay typical of equilibrium systems. Furthermore, our results suggest that in fact tau=L/c, and in the special case of maximum velocity upsilon(max)=1 (corresponding to the totally asymmetric simple exclusion process) we can identify the exact dependence of c on the input, output and hopping rates. We also emphasize that the parameter tau corresponds to the integrated autocorrelation time, which plays a fundamental role in quantifying the statistical errors in Monte Carlo simulations of these models.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Parallelizing a 1-Dim Nagel-Schreckenberg Traffic Model
    van Zon, Ramses
    Ponce, Marcelo
    arXiv, 2023,
  • [32] Finite-size effects in the Nagel-Schreckenberg traffic model
    Balouchi, Ashkan
    Browne, Dana A.
    PHYSICAL REVIEW E, 2016, 93 (05)
  • [33] Analytical investigation of the open boundary conditions in the Nagel-Schreckenberg model
    Jia, Ning
    Ma, Shoufeng
    PHYSICAL REVIEW E, 2009, 79 (03):
  • [34] The effects of reaction delay in the Nagel-Schreckenberg traffic flow model
    Jiang, R.
    Hu, M. B.
    Jia, B.
    Wang, R. L.
    Wu, Q. S.
    EUROPEAN PHYSICAL JOURNAL B, 2006, 54 (02): : 267 - 273
  • [35] The effects of reaction delay in the Nagel-Schreckenberg traffic flow model
    R. Jiang
    M. B. Hu
    B. Jia
    R. L. Wang
    Q. S. Wu
    The European Physical Journal B, 2006, 54 : 267 - 273
  • [36] Extreme events in Nagel-Schreckenberg model of traffic flow on complex networks
    Gupta, Kritika
    Santhanam, M. S.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (16-17): : 3201 - 3209
  • [37] Density fluctuations and phase transition in the Nagel-Schreckenberg traffic flow model
    Lubeck, S
    Schreckenberg, M
    Usadel, KD
    PHYSICAL REVIEW E, 1998, 57 (01): : 1171 - 1174
  • [38] Comment on "Analytical investigation of the open boundary conditions in the Nagel-Schreckenberg model"
    Neumann, Thorsten
    Wagner, Peter
    PHYSICAL REVIEW E, 2009, 80 (01):
  • [39] Phase transition at an on-ramp in the Nagel-Schreckenberg traffic flow model
    Jiang, Rui
    Wu, Qing-Song
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 366 (01) : 523 - 529
  • [40] Density fluctuations and phase transition in the Nagel-Schreckenberg traffic flow model
    Lubeck, S.
    Schreckenberg, M.
    Usadel, K.D.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (01):