Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles

被引:358
|
作者
Hong, KS [1 ]
Hong, TK
Yang, HS
机构
[1] Korea Basic Sci Inst, Busan Ctr, Pusan 609735, South Korea
[2] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea
关键词
D O I
10.1063/1.2166199
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nanofluids have been attractive for the last few years with the enormous potential to improve the efficiency of heat transfer fluids. This work focuses on the effect of the clustering of nanoparticles on the thermal conductivity of nanofluids. Large enhancement of the thermal conductivity is observed in Fe nanofluids sonicated with high powered pulses. The average size of the nanoclusters and thermal conductivity of sonicated nanofluids are measured as time passes after the sonication stopped. It is found from the variations of the nanocluster size and thermal conductivity that the reduction of the thermal conductivity of nanofluids is directly related to the agglomeration of nanoparticles. The thermal conductivity of Fe nanofluids increases nonlinearly as the volume fraction of nanoparticles increases. The nonlinearity is attributed to the rapid clustering of nanoparticles in condensed nanofluids. The thermal conductivities of Fe nanofluids with the three lowest concentrations are fitted to a linear function. The Fe nanofluids show a more rapid increase of the thermal conductivity than Cu nanofluids as the volume fraction of the nanoparticles increases. (c) 2006 American Institute of Physics.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 50 条
  • [41] Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology
    Chen, Haisheng
    Witharana, Sanjeeva
    Jin, Yi
    Kim, Chongyoup
    Ding, Yulong
    PARTICUOLOGY, 2009, 7 (02) : 151 - 157
  • [42] Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology
    Sanjeeva Witharana
    Chongyoup Kim
    Particuology, 2009, 7 (02) : 151 - 157
  • [43] Thermal conductivity, viscosity and surface tension of nanofluids based on FeC nanoparticles
    Huminic, Angel
    Huminic, Gabriela
    Fleaca, Claudiu
    Dumitrache, Florian
    Morjan, Ion
    POWDER TECHNOLOGY, 2015, 284 : 78 - 84
  • [44] Nanoparticles Shape Effect on Thermal Conductivity of Nanofluids: A Molecular Dynamics Study
    Roni, Md. Rakibul Hasan
    Morshed, A. K. M. M.
    Tikadar, Amitav
    Paul, Titan C.
    Khan, Jamil A.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 8, 2019,
  • [45] Effect of Nanolayer and Aggregation of Nanoparticles in Predicting Effective Thermal Conductivity of Nanofluids
    Chauhan, Deepti
    Singhvi, Nilima
    JOURNAL OF NANOFLUIDS, 2014, 3 (04) : 361 - 367
  • [46] A model for thermal conductivity of nanofluids
    Emami-Meibodi, Majid
    Vafaie-Sefti, Mohsen
    Rashidi, Ali Morad
    Amrollahi, Azadeh
    Tabasi, Mohsen
    Sid-Kalal, Hossein
    MATERIALS CHEMISTRY AND PHYSICS, 2010, 123 (2-3) : 639 - 643
  • [47] Review on Thermal Conductivity of Nanofluids
    Sarviya, R. M.
    Fuskele, Veeresh
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (02) : 4022 - 4031
  • [48] A model of nanofluids thermal conductivity
    Wang, Jinbo
    Chen, Gang
    Zhang, Zongqin
    HT2005: Proceedings of the ASME Summer Heat Transfer Conference 2005, Vol 1, 2005, : 501 - 508
  • [49] Thermal conductivity enhancement of nanofluids
    Cherkasova, A
    Shan, J
    CARBON NANOTUBES: FROM BASIC RESEARCH TO NANOTECHNOLOGY, 2006, 222 : 235 - +
  • [50] Modelling the thermal conductivity of nanofluids
    Tillman, P.
    Hill, J. M.
    IUTAM SYMPOSIUM ON MECHANICAL BEHAVIOR AND MICRO-MECHANICS OF NANOSTRUCTURED MATERIALS, 2007, 144 : 105 - +