Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles

被引:358
|
作者
Hong, KS [1 ]
Hong, TK
Yang, HS
机构
[1] Korea Basic Sci Inst, Busan Ctr, Pusan 609735, South Korea
[2] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea
关键词
D O I
10.1063/1.2166199
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nanofluids have been attractive for the last few years with the enormous potential to improve the efficiency of heat transfer fluids. This work focuses on the effect of the clustering of nanoparticles on the thermal conductivity of nanofluids. Large enhancement of the thermal conductivity is observed in Fe nanofluids sonicated with high powered pulses. The average size of the nanoclusters and thermal conductivity of sonicated nanofluids are measured as time passes after the sonication stopped. It is found from the variations of the nanocluster size and thermal conductivity that the reduction of the thermal conductivity of nanofluids is directly related to the agglomeration of nanoparticles. The thermal conductivity of Fe nanofluids increases nonlinearly as the volume fraction of nanoparticles increases. The nonlinearity is attributed to the rapid clustering of nanoparticles in condensed nanofluids. The thermal conductivities of Fe nanofluids with the three lowest concentrations are fitted to a linear function. The Fe nanofluids show a more rapid increase of the thermal conductivity than Cu nanofluids as the volume fraction of the nanoparticles increases. (c) 2006 American Institute of Physics.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 50 条
  • [21] The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles
    Feng, Yongjin
    Yu, Boming
    Xu, Peng
    Zou, Mingqing
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (10) : 3164 - 3171
  • [22] Calculation of the thermal conductivity of nanofluids containing nanoparticles and carbon nanotubes
    Avsec, Jurij
    Oblak, Maks
    High Temperatures - High Pressures, 2003, 35-36 (06) : 611 - 620
  • [23] Thermal conductivity of nanofluids
    Assael, M. J.
    Chen, C. -F.
    Metaxa, I. N.
    Wakeham, W. A.
    Thermal Conductivity 27: Thermal Expansion 15, 2005, 27 : 153 - 163
  • [24] Thermal conductivity of nanofluids
    Singh, A. K.
    DEFENCE SCIENCE JOURNAL, 2008, 58 (05) : 600 - 607
  • [25] On the thermal conductivity of nanofluids
    V. Ya. Rudyak
    A. A. Belkin
    E. A. Tomilina
    Technical Physics Letters, 2010, 36 : 660 - 662
  • [26] On the thermal conductivity of nanofluids
    Rudyak, V. Ya.
    Belkin, A. A.
    Tomilina, E. A.
    TECHNICAL PHYSICS LETTERS, 2010, 36 (07) : 660 - 662
  • [27] Thermal Conductivity of Nanofluids
    Keblinski, Pawel
    THERMAL NANOSYSTEMS AND NANOMATERIALS, 2009, 118 : 213 - 221
  • [28] Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
    Zhang, Xing
    Gu, Hua
    Fujii, Motoo
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (04)
  • [29] Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
    Zhang, Xing
    Gu, Hua
    Fujii, Motoo
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2007, 31 (06) : 593 - 599
  • [30] Measuring Thermal Conductivity, Viscosity Depending on Temperature Silicon Carbide - Therminol 55 Nanofluids
    Mariadhas, Anish
    Venugopal, Jayaprakash
    Jayaraman, Jayaprabakar
    Thirugnanasambandam, Arunkumar
    Balakrishnan, Kanimozhi
    Singh, Raj Kishan
    Chittamuru, Nikhil
    3RD INTERNATIONAL CONFERENCE ON FRONTIERS IN AUTOMOBILE AND MECHANICAL ENGINEERING (FAME 2020), 2020, 2311